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11.1: John Snow and the Logic of Causal
Inference



John Snow and the Broad Street Pump

▶ John Snow (1813–1858): A London
physician investigating cholera
epidemics

▶ Challenged the prevailing miasma
theory (disease from “bad air”)

▶ Observed stark differences in cholera
rates across similar neighborhoods

▶ Linked outbreaks to drinking water
sources, not air quality

▶ The Lambeth Water Company’s
upstream intake created a natural
experiment:
Cleaner water reduced cholera cases

John Snow (1813–1858)
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Snow’s Natural Experiment as a Proto-Difference-in-Differences

▶ In the early 1850s, two water companies served similar London
neighborhoods:
▶ Southwark & Vauxhall: drew water downstream:

contaminated by sewage
▶ Lambeth: moved intake pipes upstream; had cleaner,

uncontaminated water after

▶ Snow compared cholera mortality rates before and after
Lambeth’s relocation:

Company 1849 (Pre) 1854 (Post)

Southwark & Vauxhall (contaminated) 135 147
Lambeth (clean water) 85 19

▶ Both groups were comparable in poverty, crowding, and
sanitation: Only water quality differed
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Snow’s Natural Experiment as a Proto-Difference-in-Differences

Company 1849 (Pre) 1854 (Post)

Southwark & Vauxhall (contaminated) 135 147
Lambeth (clean water) 85 19

▶ Simple DiD estimate:

(147− 135)− (19− 85) = 78

⇒ 78 fewer deaths per 10,000 households among those receiving
clean water.

▶ A century before randomized trials, Snow had executed one of
history’s first natural experiments.
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From John Snow to the Logic of Difference-in-Differences

John Snow’s natural experiment compared mortality changes over
time between two otherwise similar groups:
▶ Treatment group: Households supplied by Southwark & Vauxhall

Water Company.
▶ Control group: Households supplied by Lambeth Water

Company.
▶ Intervention: Lambeth moved its intake upstream (clean water)

between 1849 and 1854.

Snow’s implicit causal logic
He compared how cholera mortality changed over time in the two
groups:

(Change in Lambeth)− (Change in Southwark & Vauxhall)
⇒ Causal effect of clean water
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11.2: Classical Two-Way Fixed Effects DiD



The Canonical 2×2 Difference-in-Differences Setup

Groups and periods:
▶ Two time-periods t ∈ {1, 2}
▶ A binary treatment d ∈ {0, 1}
▶ Two groups:

▶ Treatment group s (switchers from untreated to treated in t = 2)
▶ Control group n (never-treated)

▶ Treatment d turns on only for group s at t = 2

Potential outcomes:

Yg,t(d) = Potential Outcome of group g at time t given treatment d ∈ {0, 1}

Observed outcomes:

Ys,1 = Ys,1(0), Ys,2 = Ys,2(1),

Yn,1 = Yn,1(0), Yn,2 = Yn,2(0).
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Parallel Trends Assumpation

Parallel Trends Assumpation:
Absent treatment, treated and control would have followed the same
average change

For the 2×2 case:

E
[
Ys,2(0)− Ys,1(0)

]
= E

[
Yn,2(0)− Yn,1(0)

]
Intuition: We can use the control group’s observed change to stand in
for the treated group’s untreated change.
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Why Counterfactual Parallel Trends Are Not Fully Testable

The Parallel Trends Assumption (PTA) involves unobserved potential
outcomes:

E[Ys,2(0)− Ys,1(0)] = E[Yn,2(0)− Yn,1(0)]

But Ys,2(0) is never observed for treated units after treatment!

▶ Hence, PTA can only be partially assessed (e.g., via pre-trends),
not tested directly

▶ SUTVA violations (e.g., spillovers, interference) create the same
problem:
→ They alter the unobserved counterfactual Ys,2(0) or Yn,2(0)

▶ If control outcomes are affected by treatment exposure nearby,
parallel pre-trends are not enough
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Stable Unit Treatment Value Assumption (SUTVA)

What SUTVA means:

1. No interference:
Unit i’s outcome depends only on its own treatment:

Yi(d) unaffected by D−i

2. No hidden versions (consistency):
Treatment d ∈ {0, 1} is well-defined and uniquely maps to Yi(d)
(no multiple variants or intensities)

Why it matters for DiD:
Parallel trends concerns counterfactual changes:

E[Ys,2(0)− Ys,1(0)] = E[Yn,2(0)− Yn,1(0)]

If SUTVA fails (spillovers, General Equilibrium effects, contamination),
Ys,2(0) or Yn,2(0) are distorted by others’ treatment, so the control
group no longer mimics the treated group’s untreated change.
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Why 2×2 DiD recovers ATT

DiD estimator (2×2):

DID =
(
Ys,2 − Ys,1

)
−

(
Yn,2 − Yn,1

)
.

Rewrite observed outcomes as potential outcomes:

DID =
(
Ys,2(1)− Ys,1(0)

)
−

(
Yn,2(0)− Yn,1(0)

)
.

Add & subtract the missing counterfactual Ys,2(0) for the treated at t = 2:

DID =
(
Ys,2(1)− Ys,2(0)

)︸ ︷︷ ︸
treatment effect in s at t = 2

+
[(

Ys,2(0)− Ys,1(0)
)
−

(
Yn,2(0)− Yn,1(0)

)]
.

Take expectations and impose Parallel Trends Assumption:
E[DID] = E

[
Ys,2(1)− Ys,2(0)

]
+ E

[
Ys,2(0)− Ys,1(0)

]
− E

[
Yn,2(0)− Yn,1(0)

]︸ ︷︷ ︸
= 0 by Parallel Trends Assumption

= E
[
Ys,2(1)− Ys,2(0)

]
= ATTs,2.

Interpretation

In a clean 2× 2 switcher design, the DiD equals the average treatment
effect on the treated for the switching group in the post period,
provided the untreated trends are parallel across s and n.
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DiD as two-way fixed effects (TWFE)

To estimate effects of a treatment/policy on an outcome, researchers
often run two-way fixed effects (TWFE) regressions:

Yg,t = αg + γt + βfe Dg,t + εg,t.

where:
▶ αg: group (e.g. county) fixed effect

▶ γt: time (e.g. year) fixed effect

▶ Dg,t: realized treatment indicator (= 1 if treated in group g at time t, 0
otherwise)

Most DiDs were estimated via TWFE
26 of the 100 most cited AER papers (2015–2019) estimate TWFE
(de Chaisemartin & D’Haultfoeuille, 2021).

Also widely used in political science, sociology, and environmental
sciences.
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11.3: Event Studies and Dynamic Effects



Motivation: Beyond a Single Treatment Effect
The basic DiD gives a single average post-treatment effect. But often
we want to know:
▶ When effects appear, do they build up or fade out? Are they

constant?
▶ Whether there are differential trends before treatment.
▶ How long effects persist after exposure.

Idea: Unpack the DiD by event time
Define for each unit i:

Gi = first period when Di,t = 1, Event time: k = t− Gi.

We then interact the treatment indicator with dummies for event time:

Di,t × 1{t− Gi = k}.

Each interaction measures the treatment effect k periods after (or
before) treatment.
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The Event-Study Regression
A conventional specification is:

Yi,t = αi + λt +
∑
k ̸=−1

βk
(
Di × 1{t− Gi = k}

)
+ εi,t.

▶ αi: unit fixed effects remove permanent differences.
▶ λt: time fixed effects absorb aggregate shocks.
▶ Di × 1{t− Gi = k}: interaction capturing the treatment status at event

time k.
▶ The omitted dummy (k = −1) is the reference period.

Interpretation

βk =

Effect k periods after treatment, k ≥ 0,

Difference k periods before treatment, k < 0.

⇒ Pre-treatment coefficients (k < 0) test the observable part of the
parallel-trends assumption.
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Visualizing Dynamic Effects
Plotting β̂k with confidence intervals shows how outcomes evolve
relative to the last pre-treatment period (k = −1):
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Event−Study Estimates

▶ Leads (k < 0): should hover around zero if pre-treatment trends
are parallel.

▶ Lags (k ≥ 0): show the treatment dynamics,do effects grow or
fade?
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When Event-Study Plots Mislead

Even though event-studies are intuitive, they can be misleading:

▶ Endogenous timing: units may adopt treatment because of
pre-existing outcome trends. ⇒ apparent “effects” before
treatment may reflect selection.

▶ Selective composition: for large k, only early adopters remain
observed, so late effects mix dynamics with who is still in
sample.

▶ Staggered adoption under TWFE: already-treated units serve as
controls for later-treated ones, so β̂k combines different causal
horizons with possibly negative weights.
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11.4: The Problems with TWFE



The Problem with TWFE

Core intuition
TWFE assumes one common treatment effect for everyone, forever.
When effects differ by group or timing, this average can get distorted.

What goes wrong:

▶ With staggered adoption, already-treated groups act as
”controls”.
⇒ Some comparisons can get negative or weird weights.
⇒ The overall estimate can even flip sign.

Next: We will see this in a decomposition of β̂FE into all possible 2×2
comparisons based on de Chaisemartin & D’Haultfoeuille (2021)
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Sketch of the Decomposition of β̂FE

Start from the TWFE model:

Yg,t = αg + γt + βFEDg,t + ug,t

By the Frisch–Waugh–Lovell theorem:

β̂FE =

∑
g,t D̃g,t Ỹg,t∑

g,t D̃2
g,t

, D̃g,t = Dg,t − D̂g,t

Step 1: Express residualized treatment D̃g,t as deviations from group and time
means:

D̃g,t = Dg,t − D̄g· − D̄·t + D̄

Step 2: Insert this into the covariance term
∑

D̃g,t Ỹg,t and rearrange by pairs of
treatment changes across (g, t)

Main Idea:
Each nonzero D̃g,t comes from a group that changes treatment status relative
to other groups or periods
⇒ The estimator can be written as a weighted sum of all possible 2× 2 DiD
contrasts.
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How FWL builds the residual D̃g,t

Goal: Remove what Dg,t shares with group and time patterns

Step 1: Start from the full treatment indicator
Each cell starts with its observed treatment Dg,t

Step 2: Subtract the group mean D̄g·
Removes how “treated on average” this group is over time
⇒ Controls for permanent differences between groups

Step 3: Subtract the time mean D̄·t
Removes how many groups are treated in this period overall
⇒ Controls for common time shocks or trends

Step 4: Add back the grand mean D̄
We subtracted that global average twice, once in each step, so we put one
copy back to keep the overall mean at zero

D̃g,t = Dg,t − D̄g· − D̄·t + D̄

18 / 78



Potential Outcomes in the Decomposition
Each cell (g, t) has potential outcomes:

Yg,t(1), Yg,t(0)

and a treatment effect

TEg,t = Yg,t(1)− Yg,t(0)

Observed outcomes:

Yg,t = Yg,t(0) + Dg,t TEg,t

Residualized version:

Ỹg,t = Ỹg,t(0) + D̃g,t TEg,t

Plug into FWL:∑
g,t

D̃g,tỸg,t =
∑
g,t

D̃g,tỸg,t(0) +
∑
g,t

D̃2
g,t TEg,t
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Why the first term drops out
Under the parallel trends assumption:

E[Yg,t(0) | g, t] = αg + γt ⇒ Ỹg,t(0) has zero covariance with D̃g,t

E[D̃g,tỸg,t(0)] = 0

Intuition:

▶ The untreated potential outcome only reflects group and time
patterns

▶ Those same patterns were already “partialed out” of Dg,t by the
FWL residualization

▶ ⇒ Once group and time means are removed, there’s no
systematic relation left between D̃g,t and Ỹg,t(0)

Hence:

E[β̂FE] = E

[∑
g,t D̃2

g,t TEg,t∑
g,t D̃2

g,t

]
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How Residualized Treatment Creates Contrasts

D̃g,t = Dg,t − D̄g· − D̄·t + D̄

▶ Each D̃g,t is a deviation from both its group’s and the period’s average
treatment.

▶ A large positive D̃g,t means “newly treated” relative to others.
▶ A large negative D̃g,t means “already treated” when others are not.

Intuition
Residualization turns Dg,t into a measure of how much that cell’s
treatment status changes relative to the comparison groups and
periods.

E[β̂FE] = E

[∑
g,t D̃2

g,t TEg,t∑
g,t D̃2

g,t

]
is therefore an average of treatment effects weighted by these
relative changes.
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Each Residual Implies a 2×2 DiD Comparison

For any two groups and periods (g, g′, t, t′):

∆Dg,t;t′ = (Dg,t − Dg,t′)− (Dg′,t − Dg′,t′)

▶ If one group changes treatment while the other does not, ∆Dg,t;t′ = ±1.

▶ The corresponding outcome contrast

∆Yg,t;t′ = (Yg,t − Yg,t′)− (Yg′,t − Yg′,t′)

is a standard 2× 2 Difference-in-Differences.

▶ Summing all such comparisons with D̃g,t weights reproduces the TWFE
estimator: ∑

g,t

D̃g,tỸg,t =
∑
(g,t)

ωg,t ∆Yg,t;t′ .

Thus: TWFE aggregates all possible 2× 2 DiD contrasts in the data.
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The Weighted-Average Representation

Collecting all 2× 2 comparisons yields:

E[β̂FE] = E

 ∑
(g,t):Dg,t ̸=0

Wg,t TEg,t

 , Wg,t =
D̃2

g,t∑
g′,t′ D̃2

g′,t′
,
∑

Wg,t = 1.

▶ Each Wg,t reflects how strongly that cell’s treatment pattern deviates
from group and period averages.

▶ If some D̃g,t are negative (already-treated groups), their cells receive
negative weights.

▶ These negative weights can distort the overall estimate when effects
differ by timing.

Takeaway
β̂FE is a weighted average of all cell-level treatment effects. Weights
depend on treatment-timing heterogeneity and can even be negative.
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What TWFE actually estimates

E[β̂FE] = E

 ∑
(g,t):Dg,t ̸=0

Wg,t TEg,t

 , Wg,t =
D̃2

g,t∑
g′,t′ D̃2

g′,t′
,

∑
Wg,t = 1.

▶ Combines all 2× 2 comparisons where treatment changes for one
group vs. another.

▶ Comparison types:
1. Switchers vs. never/not-yet treated: What we want
2. Early vs. late switchers: Mixes timing effects
3. Switchers vs. already-treated ⇒ possible negative weights.

▶ Negatives arise when already-treated units act as (implicit) controls.

Why it matters

▶ With heterogeneous effects, TWFE’s weighted mean can be biased or
even sign-reversed.

▶ β̂FE rarely reflects a single “true” effect under staggered adoption.

24 / 78



What Does TWFE Weight?

We decomposed βTWFE into ATTs. Now we introduce another useful
decomposition:
Goodman-Bacon (GB):

▶ Unit: Weighted avg. of 2×2 DiD
designs.

▶ Weights: Non-negative, sum to 1
⇒ which timing contrasts drive
TWFE.

▶ Pitfall: Some designs (e.g.,
later-as-control) can flip sign
with dynamics.

de Chaisemartin & D’Haultfoeuille
(dCdH):

▶ Unit: Weighted sum of ATTg,t
(cohort × time).

▶ Weights: Can be negative ⇒
β̂TWFE not a convex avg.

▶ Use: Shows which g, t cells
TWFE (de-)emphasizes.

Key takeaway
GB: Which designs drive TWFE?
dCdH: Which ATTg,t does TWFE (even negatively) weight?
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K2 distinct DiDs

Let there be K different treatment timing groups and one
never-treated group U.

▶ For each ordered pair of timing groups (j, b) we can form a
canonical 2× 2 DiD where j is treated and b is the comparison.

▶ This gives K2 distinct 2× 2 DiDs (including comparisons to the
never-treated group).

Example: Three timing groups a, b, c and one untreated group U.

a to b b to a c to a
a to c b to c c to b
a to U b to U c to U
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Example DiD with two timing groups

To keep intuition simple, we now focus on only two timing groups:

▶ an early group k treated at time t∗k ,

▶ a late group l treated at time t∗l ,

▶ and a never-treated group U.

▶ k, l are defined by the time of treatment adoption (t∗k , t
∗
l ), with k

treated earlier than l.

▶ D̄k: share of periods in which group k is treated.

▶ δ̂2×2
jb : canonical 2× 2 DiD estimator comparing treatment group j

to comparison group b.

▶ In the Bacon decomposition, the TWFE estimate is a weighted
average of these δ̂2×2

jb terms, with weights depending on
variation in treatment timing and group sizes.
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2× 2 DiDs with two timing groups

Each treated group can be compared to the others to form a
canonical 2× 2 DiD:

Treated Comparison Interpretation

k l Early vs. late group
l k Late vs. early group
k U Early vs. never-treated
l U Late vs. never-treated

This yields four distinct ordered 2× 2 DiD comparisons
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Illustration: Our Example

t* (k) t* (l)
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Staggered adoption: k early, l late, U never
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Early Group vs. Never-Treated Group

δ̂2×2
kU =

(
ȳpost(k)k − ȳpre(k)k

)
−
(
ȳpost(k)U − ȳpre(k)U

)

t* (k)

20

40

60

80

0 10 20 30
Time

O
ut

co
m

e Group
k
l
U

Early vs. Never−Treated Comparison

A. Early group k compared to never-treated U around t∗k .
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Late Group vs. Never-Treated Group

δ̂2×2
lU =

(
ȳpost(l)l − ȳpre(l)l

)
−
(
ȳpost(l)U − ȳpre(l)U

)

t* (l)
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Late vs. Never−Treated Comparison

B. Late group l compared to never-treated U around t∗l .
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Early Group vs. Late Group, before t∗l

δ2×2,k
kl =

(
ȳMID(k,l)
k − ȳPRE(k)k

)
−
(
ȳMID(k,l)
l − ȳPRE(k)l

)

t* (k) t* (l)
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Early (treated) vs. Late (not−yet−treated)

C. Early group k treated, late group l not-yet treated; comparison uses only
periods before t∗l .
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Late Group vs. Early Group, after t∗k

δ2×2,l
lk =

(
ȳPOST(k,l)l − ȳMID(k,l)

l

)
−
(
ȳPOST(k,l)k − ȳMID(k,l)

k

)

t* (k) t* (l)
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Late (treated) vs. Early (already−treated)

D. Late group l treated, early group k already treated; comparison uses only
periods after t∗k .
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Bacon decomposition

Consider the TWFE regression estimated at the group level:

Yist = β0 + δDist + τt + σs + εist

With two treated groups (k, l) and one never-treated group (U), the
TWFE estimator of δ̂ can be written as a weighted average of four
distinct 2× 2 DiDs:

δ̂TWFE =
∑
k̸=U

skUδ̂2×2
kU +

∑
k̸=U

∑
l>k

skl
[
µkl δ̂

2×2,k
kl + (1− µkl) δ̂

2×2,l
lk

]
.

▶ skU, skl: non-negative weights that sum to 1.

▶ δ̂2×2
kU and δ̂2×2

lU : DiDs of early/late groups vs. never-treated.

▶ δ̂2×2,k
kl : early vs. late using only pre t∗l periods.

▶ δ̂2×2,l
lk : late vs. early using only post t∗k periods.
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How the Weights Are Determined

Weights in the Goodman–Bacon decomposition depend on two
ingredients:

▶ Group size: larger groups ⇒ more influence on δ̂TWFE.

▶ Treatment variance: groups treated for about half of the sample
period get the biggest weight.

skU ∝ nknU Dk(1− Dk), skl ∝ nknl (Dk − Dl)[1− (Dk − Dl)]

Intuition
Weights are largest where there is most variation in treatment timing,
that is, when groups switch from untreated to treated in the middle of
the panel.
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Why Some Comparisons Are Dangerous

Not all 2× 2 comparisons identify the same causal contrast:

▶ Comparisons with never-treated groups are typically valid (if
parallel trends hold).

▶ Comparisons where later-treated groups serve as controls for
already-treated groups can pick up treatment dynamics, not
counterfactual trends.

▶ These comparisons can even flip the sign of δ̂TWFE if effects
grow or fade over time.

What the weights teach us
Weights reveal which timing contrasts drive your estimate. If much
weight falls on “treated vs. treated” comparisons, your TWFE
estimate likely mixes treatment effects at different horizons.
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Interactive Tools for TWFE Problems
Two excellent interactive Shiny apps from ”Causal Inference: The
Mixtape” allow you to explore the issues we discussed:

▶ Goodman–Bacon Decomposition App
Bacon Decomposition

Visualizes how TWFE mixes different 2×2 DiDs and how these
affect the overall TWFE parameter

▶ Event-Study / TWFE vs. Modern Estimators App
Event-Study Simulation

Compares TWFE event-study estimates to modern alternatives
in the same setup as above

Recommended Use
Experiment with treatment timing, heterogeneity, and dynamic effects
to see how TWFE behaves—and how modern estimators fix these
issues.
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From Decomposition to Better Practice

▶ Use the Bacon decomposition to diagnose what drives your
estimate:
▶ Are most weights on valid (treated vs. untreated) DiDs?
▶ Or on questionable (treated vs. treated) ones?

▶ If the latter, move to estimators that respect staggered timing:
▶ Stacking or Sun & Abraham (2020), Callaway & Sant’Anna

(2021), de Chaisemartin and D’Haultfoeuille (2020).

Takeaway
The Goodman–Bacon decomposition helps us understand why TWFE
can fail and points the way to designs that avoid those pitfalls.
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11.5: Modern Solutions to TWFE Bias



Core Idea: Group-Time Average Treatment Effects
Problem: TWFE pools all treated units together and implicitly assumes a
common treatment effect. Under staggered adoption, this mixes effects
across:

▶ different cohorts g (time of first treatment)
▶ different relative times k = t− Gi

Solution: Estimate “clean” effects for each cohort and
period

ATT(g, t) = E
[
Yg,t(1)− Yg,t(0)

∣∣ Gi = g
]

▶ Compare cohort g only to units that are untreated at time t.
▶ Never uses already-treated cohorts as controls.

▶ All modern estimators recover ATT(g, t) in some way.
▶ Differences arise in how they aggregate ATT(g, t) or handle event-time

dummies.
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Callaway & Sant’Anna (2021): Core Idea

Goal: Estimate treatment effects that vary by cohort and by time
since treatment.

Core Idea
For each treatment cohort g and period t:

ATT(g, t) = (change in g around g)− (change in controls not yet treated at t)

Controls: only units that are never-treated or not-yet-treated.

▶ Design-based: builds treatment effects from simple 2×2 DID
comparisons.

▶ Cohort-specific parallel trends: only requires PT for each cohort
vs. its valid controls.

▶ Modular: ATT(g, t) can be estimated via IPW, regression, or
doubly robust methods.
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Callaway & Sant’Anna (2021): Details

Group-time ATT:

ATT(g, t) =
(
Ȳg,t − Ȳg,g−1

)
−
(
ȲC(g,t),t − ȲC(g,t),g−1

)
where C(g, t) are units untreated at period t.

Identification:
Parallel trends need to hold within cohort:

E[Yg,t(0)− Yg,g−1(0)] = E[YC(g,t),t(0)− YC(g,t),g−1(0)]

Aggregation into policy parameters
Overall effect:

ATTCS =
∑
g,t

wg,t · ATT(g, t)

Weights:
wg,t ∝ Ng · 1{t ≥ g}

⇒ More weight to larger cohorts and feasible post-treatment periods
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Callaway & Sant’Anna (2021): Pros and Cons

Advantages

▶ Cohort-specific effects −→ respects staggered adoption.

▶ No treated-vs-treated comparisons.

▶ Handles covariates via inverse-probability weighting.

▶ Produces estimable objects aligned with economic questions.

Disadvantages

▶ Efficiency loss: Each ATT(g, t) uses only units that are still
untreated at time t.

▶ Precision varies: some cohorts have few units left untreated at
certain times.
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Sun & Abraham (2021): Core Idea
Problem solved: TWFE event studies are contaminated because
already-treated units act as controls.

Core Idea
Interacting cohort g with relative time k:

βg,k = ATT(g, g+ k)

Event-study coefficient is a clean aggregation:

βSA
k =

∑
g

ωg,k βg,k

▶ Residualized TWFE: orthogonalizes cohort × time patterns to remove
treated-as-control problems

▶ Convex aggregation: final dynamic effects are weighted averages with
non-negative weights
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Sun & Abraham (2021): Details
Cohort-specific relative-time effects:

βg,k = ATT(g, g+ k)

Aggregation across cohorts
For each event time k:

βSA
k =

∑
g

ωg,k · ATT(g, g+ k)

Weights:

ωg,k =
Ng · 1{g+ k ≤ T}∑
g′ Ng′ · 1{g′ + k ≤ T}

Interpretation
▶ Only cohorts for which event time k is observed contribute.
▶ Larger cohorts receive more weight.
▶ No treated-vs-treated comparisons → no contamination.
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Sun & Abraham (2021): Pros and Cons

Advantages
▶ Pre-trends (k < 0) are unbiased: only uses not-yet-treated

controls.
▶ No negative weights or sign reversals.
▶ Provides interpretable dynamic effects over event time.

Disadvantages
▶ Only an event-study method: does not give one overall ATT.
▶ For some event times, only a subset of cohorts provide

information ⇒ estimates near the edges can be noisy.
▶ Interpretation becomes harder when few groups contribute

at a given relative time.
▶ Requires enough pre-treatment periods for each cohort to

check pre-trends.
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Borusyak, Jaravel & Spiess (2024): Core Idea
Goal: Recover unbiased treatment effects in staggered DiD without assuming
homogeneous effects and without using treated units as controls.

Yit(0) = αi + βt

1. Estimate untreated potential outcomes using only never-treated or
not-yet-treated units.

2. Impute counterfactual untreated outcomes:

Ŷit(0) = α̂i + β̂t

3. Estimate cell-level treatment effects:

τ̂it = Yit − Ŷit(0)

4. Aggregate with weights wit to get any ATT estimand:

ÂTTw =
∑
it∈Ω1

wit τ̂it

Key insight: All unbiased DiD estimators can be written in this form; BJS
derive the unique efficient one.
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Borusyak, Jaravel & Spiess (2024): Details
Model for untreated outcomes

Yit(0) = αi + βt + εit

This is estimated only on untreated observations:
Never-treated or not-yet-treated.

Efficient estimator under unrestricted heterogeneity:

τ̂it = Yit − α̂i − β̂t

Aggregate via:
τ̂∗w =

∑
it∈Ω1

wit τ̂it

Identification requirements:
▶ Parallel trends in Yit(0) (unit FE + time FE structure)
▶ No anticipation for untreated it
▶ Enough untreated support to estimate FE structure
▶ Estimand ATTw must be identified (no ATT beyond comparable

horizons)
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BJS with Repeated Cross-Sections (I): Why It Matters
Many empirical DiD applications use repeated cross-sections:
CPS, ACS, LFS, Eurostat LFS, DHS, household surveys, etc.

Problem: In repeated cross-sections, we cannot estimate unit fixed
effects αi
because the same units are not followed over time.

BJS solution: Replace unit FE with a flexible function of covariates:

E[Yit(0) | Xi, t] = m(Xi) + βt.

▶ Estimate m(Xi) using untreated observations
▶ Impute counterfactuals:

Ŷit(0) = m̂(Xi) + β̂t

▶ Proceed exactly as in the panel case:

τ̂it = Yit − Ŷit(0)
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BJS with Repeated Cross-Sections (II): Interpretation
Assumption becomes:

E[Yit(0) | Xi, t] = m(Xi) + βt

rather than unit-specific αi.

▶ This is the standard conditional parallel trends assumption used
in repeated cross-sections.

▶ No treated units are ever used as controls for others.

▶ Flexible m(X) allows rich composition adjustment across years.

Why this is useful:

▶ Works when panel data are unavailable or impossible (e.g.
rotating surveys).

▶ Avoids limitations of TWFE and event-study estimators in
repeated XS.

▶ Often more efficient than IPW-based repeated-XS DiD methods.
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Borusyak, Jaravel & Spiess (2024): Pros and Cons

Advantages

▶ Unbiased under arbitrary treatment-effect heterogeneity.

▶ Efficient among all linear unbiased estimators under spherical
errors.

▶ Works with covariates, triple-differences, repeated
cross-sections.

▶ Clean separation of pre-trend testing and effect estimation.

Disadvantages

▶ Needs many untreated observations to estimate FE precisely.

▶ Efficiency gains shrink with strong serial correlation.

▶ Cannot identify long-run effects beyond comparison window.

▶ Requires two-step implementation (though computationally
fast).
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Core Idea: Stacked Difference-in-Differences

Idea: Build a separate “clean” DID for each adoption event (sub-experiment)
and stack them vertically into one dataset.

▶ Removes contaminated late-vs-early comparisons from TWFE.
▶ Each sub-experiment includes only:

▶ Units first treated at a
▶ “Clean controls’’ not yet treated at event time

▶ Run a single TWFE DID or event-study regression on the stacked data.

Goal: Recover an average causal effect by pooling multiple valid 2x2 DIDs.
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Stacking: The data with an imbalanced treatment
times

tk tl

k

l

U

52 / 78



Stacking: Creating the k-dataset

tk − a tk tk + b

k

l

U

Choose max pre (−a) and post (+b) periods
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Stacking: Creating the l-dataset

tl − a tl tl + b

k

l

U

Choose max pre (−a) and post (+b) periods
Already-treated k observations are dropped as controls for l
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Stacking: Estimation after creating the datasets

Goal: Estimate dynamic treatment effects using the two clean
treatment-control datasets (for groups k and l).
Classical steps for stacking:

1. Stack the two trimmed datasets
Each row corresponds to a triple:

(s, g, e) unit, cohort g ∈ {k, l}, e = t− tg

Only observations inside the window [tg − a, tg + b] appear.

2. Estimate an event-study regression on the stack

Ysge = αg + λe +
∑
e̸=−1

βe · 1{e}+ εsge

with:
▶ cohort fixed effects αg,
▶ relative-time indicators 1{e},
▶ e = −1 as the omitted category.
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Stacking: Identification Problem
Problem (Wing, Freedman & Hollingsworth, 2024): The unweighted stacked
DID does not identify

▶ the ATT,
▶ any causal aggregate of ATTs,
▶ nor any convex combination of treatment effects.

Reason: Implicit differential weighting (core failure)

DIDstack
e =

∑
j

ND
j

ND∆YD
j,e −

∑
j

NC
j

NC∆YC
j,e

▶ Treated trends weighted by ND
j /ND

▶ Control trends weighted by NC
j /NC

⇒ Weights differ across treated and control arms.

Even if parallel trends hold within every sub-experiment, these untreated
trends do not cancel, so:

DIDstack
e ̸= ATT(a, a+ e) (not any meaningful causal parameter).
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Stacking: Pros and Cons
Advantages
▶ Conceptually simple: regression-based estimator familiar to

applied researchers.
▶ Makes research designs explicit (each sub-experiment is a clean

2x2 DID).
▶ Easy to implement dynamic effects/event studies.

Disadvantages (critical)
▶ Bias: Classic stacked regressions apply different implicit

weights to treated and control groups across sub-experiments
⇒ not a causal estimand.

▶ Not a convex combination of ATTs.
▶ Compositional change across event time unless data are

trimmed.
▶ Requires corrective weights to identify the trimmed aggregate

ATT.
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Where We Go Next

▶ So far: modern DiD methods correct TWFE’s weighting and
timing problems.

▶ But all still rely on a (conditional) parallel trends assumption.

▶ Synthetic DiD relaxes this by blending synthetic controls with
DiD.

▶ It allows for data-driven construction of untreated
counterfactuals.
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11.6: Synthetic Difference-in-Differences



Why Talk About Synthetic Control in a DiD Lecture?

We will introduce synthetic control first. It was developed for settings,
where parallel trends are doubtful, especially for a single treated unit

▶ SC solves exactly the core DiD problem: How do we build a
credible counterfactual trend?

▶ Many real-world applications combine:

▶ It naturally leads to Synthetic Difference-in-Differences
(Arkhangelsky et al., 2021), a hybrid approach

Roadmap: SC → California smoking ban → placebo inference →
multi-unit generalization → Synthetic DiD
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Synthetic Control: Core Idea

Abadie, Diamond & Hainmueller (2010, 2015): Construct a “synthetic”
untreated unit that recreates the treated unit’s pre-treatment path.

▶ Example Treated unit: e.g. California (Prop 99, 1988 tobacco
control program)

▶ Donor pool: other US states never adopting the reform in that
period

▶ Find weights wj ≥ 0,
∑

j wj = 1 s.t.

YCA, pre ≈
∑

j

wjYj,pre

▶ Synthetic CA = weighted average of control states that best
replicate CA’s pre-1988 cigarette sales.

Motivation: If synthetic CA matches actual CA well before treatment,
then deviations after treatment represent the treatment effect.
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Example: Did California’s 1988 Smoking Ban Reduce Cigarette Sales?
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Time Series of Synthetic and Observed California Cigarette Sales

Dashed line denotes the time of the intervention.
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Pre-treatment Fit: The Heart of Synthetic Control

Pre-treatment match is the credibility test

▶ If synthetic CA reproduces CA’s trend and level, the donor pool is
a valid counterfactual.

▶ Large pre-treatment Error → poor match → synthetic control
unreliable

▶ A good synthetic control should:
▶ track treated unit year-by-year pre-treatment
▶ replicate all main covariates (e.g., income, demographics)

Summary: Synthetic control is fundamentally about building a
credible counterfactual trend. The better the pre-treatment match, the
more trustworthy the post-treatment estimates
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Multiple Predictors in Synthetic Control

Synthetic control matches the treated unit to a weighted average of
donors using a vector of predictors, not just the outcome:

Xtreated ≈ Xw =
∑
j∈C

wjXj.

Predictors often include:

▶ lagged outcomes (in the example: cigsales 1975, 1980, 1988)

▶ averages over windows (here for income, cigarette prices,
demographics)

▶ additional behavioral variables (here: beer consumption)

Motivation: If donors match California on these predictors, they form
a credible synthetic counterfactual.
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How Synthetic Control Chooses Unit Weights

Weights wj create the synthetic unit:

Synthetic =
∑

j

wjYj,t, wj ≥ 0,
∑

j

wj = 1.

They are chosen to minimize the discrepancy in predictors:

min
w

(XCA − Xw)
′V(XCA − Xw).

Interpretation:

▶ Units that closely match California across all predictors receive
high weights.

▶ Poorly matching states receive weights near zero.

▶ The predictor importance matrix V emphasizes variables most
predictive of pre-trends.

▶ We can see how the synthetic unit is composed
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Unit Weights in our Example

Control Unit Weights (W) Variable Weights (V)
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Placebo Tests: Is California “Special”?
To judge whether CA’s gap is meaningful:
In-space placebo test:

▶ Pretend each donor state received the 1988 ban.

▶ Construct synthetic controls for all donor states.

▶ Plot all placebo gaps together with CA’s.

Interpretation:

▶ If CA’s post-treatment gap is among the largest, the effect is
unlikely due to chance.

▶ If many placebo states show equal/larger gaps, results are weak.

Root Mean Squared Prediction Error ratio test (Abadie et al. 2010):

Ratioj =
post-RMSPEj

pre-RMSPEj

California should be an extreme outlier if Proposition 99 had real
effects.
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Placebos for our Example

−20

−10

0

10

20

30

1970 1975 1980 1985 1988 1995 2000
Year

C
ig

ar
et

te
 S

al
es

California control units

Difference of each 'state' in the donor pool

Pruned all placebo cases with a pre−period RMSPE exceeding two times the treated unit's pre−period RMSPE.
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Extending Synthetic Control to Multiple Treated Units

Synthetic control was designed for one treated unit. But reforms
often affect many units at once (our classic Diff-in-Diff case!)
Two main approaches:

1. Build a separate synthetic control for each treated unit and
average the estimated effects.

2. Pool treated units and estimate a single synthetic comparison
group.

Challenges:

▶ More treated units → harder to find one donor pool that fits all.

▶ Noise and imbalance across many pre-treatment fits.

▶ SC becomes computationally heavy and conceptually brittle.

Need: A method that combines SC’s weighting with the scalability of
DiD.
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Synthetic Difference-in-Differences (SDID)

Arkhangelsky, Athey, Hirshberg, Imbens & Wager (AER, 2021)
develop a hybrid method that combines:

▶ Synthetic Control: Unit weights to match pre-trends

▶ Difference-in-Differences: Time FE, unit FE, large-sample
inference

Idea:

▶ Estimate unit weights ωi so controls mimic treated units’
pre-trends

▶ Estimate time weights λt to align pre/post periods

▶ Run a weighted TWFE regression:

τ̂SDID = arg min
τ

∑
i,t

ωiλt(Yit − αi − βt − τWit)
2.

Result: A robust estimator usable for multiple treated units
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Synthetic DiD: Key Ingredients

Goal: Improve DiD when parallel trends are doubtful by using
data-driven pre-treatment matching, in the spirit of synthetic control.

Two sets of weights:

▶ Unit weights ωi: Make the weighted average of control units
mimic the treated units’ pre-treatment path.∑

i∈C

ωiYi,t ≈ 1

NT

∑
i∈T

Yi,t for all pre-treatment t

▶ Time weights λt: Make the weighted average of pre-treatment
periods match the post-treatment level/trend.∑

t<T0

λtY·,t ≈
∑
t≥T0

λtY·,t

Idea: Use SC-style weights to balance pre-trends, then estimate the
treatment effect using a weighted TWFE regression for efficiency.
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How SDID Chooses the Weights

SDID chooses weights by matching pre-treatment outcomes, but it
also adds a small ridge penalty so the weights do not become
extreme.

1. Unit weights: Make controls look like treated units (pre-period)

ω = arg min
ωi≥0,

∑
i ωi=1

∑
t<T0

(
ȲT
t −

∑
i∈C

ωiYi,t

)2

︸ ︷︷ ︸
match pre-treatment paths

+ λω∥ω∥22︸ ︷︷ ︸
ridge penalty

▶ The first term enforces good pre-period fit

▶ The ridge penalty pushes weights toward being smoother
(shrinks size of the weights)

71 / 78



How SDID Chooses the Weights

2. Time weights: Make pre-period look like post-period

λ = arg min
λt≥0,

∑
t λt=1

∑
i∈C

(
ȲC
i −

∑
t

λtYi,t

)2

︸ ︷︷ ︸
match pre- and post-period averages

+ λλ∥λ∥22︸ ︷︷ ︸
ridge penalty

▶ SDID compares post to pre just like DiD, but not all pre-periods
are equally informative

▶ Time weights reweight the pre-period so it better represents the
post-period the treated units would have faced

▶ This avoids letting noisy or unrepresentative early pre-periods
distort the counterfactual

▶ Result: a more credible “post - pre’’ difference and a
better-aligned DiD comparison.
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The SDID Estimator and Interpretation
Given unit weights ωi and time weights λt, SDID estimates:

τ̂SDID =
∑
i,t

ωiλt
(
Yi,t − α̂i − β̂t

)
Wi,t

where:
▶ α̂i = unit FE estimated using weighted controls
▶ β̂t = time FE estimated using weighted controls
▶ Wi,t = treatment indicator

Interpretation

▶ Pre-treatment weighted means of treated and weighted controls
are balanced by design.

▶ Post-treatment effect is then identified using a DiD-style contrast
of

(treated units) − (synthetic controls).

▶ Combines SC’s robustness to trend misspecification with DiD’s
statistical power.
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11.7: Summary and Guidelines



Modern DiD: Big Picture
▶ DiD is a research design, not just a regression:

▶ Target parameter: typically ATT for some group × time
▶ Identification: (variants of) parallel trends + no anticipation

▶ Even complicated settings (staggered timing, covariates,
weights) can be viewed as aggregations of 2×2 “building
blocks”
▶ Each building block: one group where treatment changes

vs. one where it does not
▶ Identification comes from simple 2×2 parallel trends

▶ Forward-engineering vs. reverse-engineering
▶ Forward: start from causal question → parameter →

assumptions → estimator
▶ Reverse: start from TWFE and ask “when does this have a

causal interpretation?”

▶ Baker, Callaway, Goodman-Bacon, Sant’Anna (2025):
DiD practice should be organized around clear causal
targets, transparent assumptions, and heterogeneity.
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A Practical DiD Checklist (Baker et al. + this lecture)

1. Define the causal object
▶ Which ATT(s)? 2×2, event-time ATTs, group-time ATTs,

distributional effects?
▶ Unit of analysis, timing group, weights (units vs.

population)?

2. State identification assumptions
▶ Which parallel trends? (never-treated, not-yet-treated,

all-groups)
▶ No anticipation, SUTVA, overlap

3. Assess plausibility
▶ Pre-trend / event-study diagnostics (Section 11.3)
▶ Balance in covariates and outcomes; theory for selection

into treatment
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A Practical DiD Checklist (Baker et al. + this lecture)

3. Choose an estimator consistent with 1–3
▶ Avoid plain TWFE when there is staggered timing and

heterogeneity (Section 11.4)
▶ Use a modern estimator fitting your setting

4. Do inference and assess robustness
▶ Cluster appropriately; be explicit about what is “random”
▶ Sensitivity to alternative comparison groups, functional

forms, weights, estimators
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Selected Advanced Extensions (Not Covered)

Here is an overview of important topics in the DiD literature that we
do not discuss in detail that might be interesting for your research:

▶ Robustness to Parallel-Trends Violations
Rambachan & Roth, 2023: ”A More Credible Approach to Parallel
Trends”
Instead of assuming exact parallel trends, this approach
imposes bounds on how far post-treatment trends may deviate
from pre-treatment trends.

▶ Continuous Treatments in DiD
Callaway et al. 2024: ”Difference‑in‑Differences with a
Continuous Treatment”

▶ Doubly-Robust & Conditional Parallel Trends
Sant’Anna & Zhao, 2018: ”Doubly Robust
Difference‑in‑Differences Estimators”
Handling conditioning on covariates and more flexible
parallel-trends assumptions efficiently.
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Where to Follow Current Developments in DiD

Modern DiD is an active research area. Excellent sources for staying
up to date:

▶ Mixtape Sessions (Cunningham et al.) Comprehensive lecture
series with slides, code, and applications.
github.com/Mixtape-Sessions

▶ Difference-in-Differences Reading Group (YouTube)
Presentations by leading DiD researchers (Roth,
Goodman-Bacon, Callaway, Sant’Anna, etc.). YouTube: DiD
Reading Group

▶ Authors’ GitHubs Cutting-edge methods and replication code:
jonathandroth, Callaway, Sant’Anna
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https://github.com/rothsc
https://github.com/bcallaway11
https://github.com/pedrohcgs
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