

Advanced Econometrics

Lecture 11: Difference-in-Differences

Eduard Brüll
Fall 2025

Advanced Econometrics

11. Difference-in-Differences

11.1 Motivation: John Snow and the Logic of Causal Inference

11.2 Classical Two-Way Fixed Effects (TWFE) DiD

11.3 Event Studies and Dynamic Effects

11.4 The Problems with TWFE

11.5 Modern Solutions:

11.5.1 Callaway-Sant'Anna

11.5.2 Sun-Abraham Event-studies

11.5.3 de Chaisemartin-D'Haultfoeuille

11.5.4 Stacking

11.6 Synthetic Difference-in-Differences

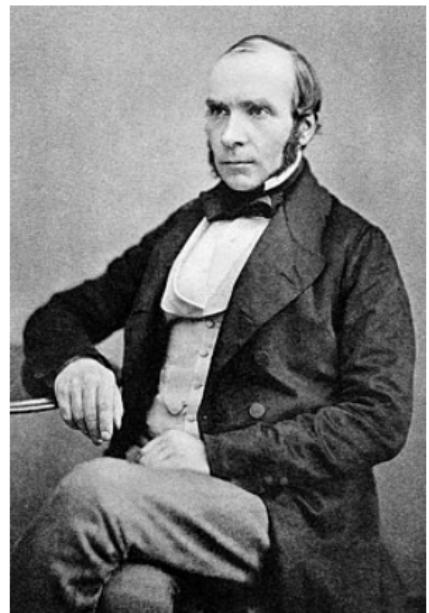
11.7 Summary and Guidelines

Literature: Cunningham (2021, Causal Inference: The Mixtape); Callaway & Sant'Anna (2021); Sun & Abraham (2021); de Chaisemartin & D'Haultfoeuille (2020)

11.1: John Snow and the Logic of Causal Inference

John Snow and the Broad Street Pump

- ▶ **John Snow (1813–1858):** A London physician investigating cholera epidemics
- ▶ Challenged the prevailing miasma theory (disease from “bad air”)
- ▶ Observed stark differences in cholera rates across similar neighborhoods
- ▶ Linked outbreaks to **drinking water sources**, not air quality
- ▶ The Lambeth Water Company’s upstream intake created a **natural experiment**:
Cleaner water reduced cholera cases



John Snow (1813–1858)

Snow's Natural Experiment as a Proto-Difference-in-Differences

- ▶ In the early 1850s, two water companies served similar London neighborhoods:
 - ▶ **Southwark & Vauxhall:** drew water downstream: contaminated by sewage
 - ▶ **Lambeth:** moved intake pipes upstream; had cleaner, uncontaminated water after
- ▶ Snow compared cholera mortality rates before and after Lambeth's relocation:

Company	1849 (Pre)	1854 (Post)
Southwark & Vauxhall (contaminated)	135	147
Lambeth (clean water)	85	19

- ▶ Both groups were comparable in poverty, crowding, and sanitation: Only water quality differed

Snow's Natural Experiment as a Proto-Difference-in-Differences

Company	1849 (Pre)	1854 (Post)
Southwark & Vauxhall (contaminated)	135	147
Lambeth (clean water)	85	19

- ▶ Simple DiD estimate:

$$(147 - 135) - (19 - 85) = 78$$

- ⇒ **78 fewer deaths per 10,000 households** among those receiving clean water.
- ▶ A century before randomized trials, Snow had executed one of history's first natural experiments.

John Snow's natural experiment compared mortality changes over time between two otherwise similar groups:

- ▶ **Treatment group:** Households supplied by Southwark & Vauxhall Water Company.
- ▶ **Control group:** Households supplied by Lambeth Water Company.
- ▶ **Intervention:** Lambeth moved its intake upstream (clean water) between 1849 and 1854.

Snow's implicit causal logic

He compared how cholera mortality **changed over time** in the two groups:

$$\begin{aligned} & (\text{Change in Lambeth}) - (\text{Change in Southwark \& Vauxhall}) \\ & \Rightarrow \text{Causal effect of clean water} \end{aligned}$$

11.2: Classical Two-Way Fixed Effects DiD

The Canonical 2x2 Difference-in-Differences Setup

Groups and periods:

- ▶ Two time-periods $t \in \{1, 2\}$
- ▶ A binary treatment $d \in \{0, 1\}$
- ▶ Two groups:
 - ▶ **Treatment group s** (switchers from untreated to treated in $t = 2$)
 - ▶ **Control group n** (never-treated)
- ▶ Treatment d turns on only for group s at $t = 2$

Potential outcomes:

$Y_{g,t}(d)$ = Potential Outcome of group g at time t given treatment $d \in \{0, 1\}$

Observed outcomes:

$$\begin{aligned} Y_{s,1} &= Y_{s,1}(0), & Y_{s,2} &= Y_{s,2}(1), \\ Y_{n,1} &= Y_{n,1}(0), & Y_{n,2} &= Y_{n,2}(0). \end{aligned}$$

Parallel Trends Assumption

Parallel Trends Assumption:

Absent treatment, treated and control would have followed the same average change

For the 2×2 case:

$$\mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] = \mathbb{E}[Y_{h,2}(0) - Y_{h,1}(0)]$$

Intuition: We can use the control group's observed change to stand in for the treated group's **untreated** change.

The **Parallel Trends Assumption (PTA)** involves **unobserved potential outcomes**:

$$\mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] = \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)]$$

But $Y_{s,2}(0)$ is never observed for treated units after treatment!

- ▶ Hence, PTA can only be **partially assessed** (e.g., via pre-trends), not tested directly
- ▶ **SUTVA violations** (e.g., spillovers, interference) create the **same problem**:
 - They alter the unobserved counterfactual $Y_{s,2}(0)$ or $Y_{n,2}(0)$
- ▶ If control outcomes are affected by treatment exposure nearby, parallel pre-trends are not enough

Stable Unit Treatment Value Assumption (SUTVA)

What SUTVA means:

1. No interference:

Unit i 's outcome depends only on its own treatment:

$$Y_i(d) \text{ unaffected by } D_{-i}$$

2. No hidden versions (consistency):

Treatment $d \in \{0, 1\}$ is well-defined and uniquely maps to $Y_i(d)$ (no multiple variants or intensities)

Why it matters for DiD:

Parallel trends concerns **counterfactual** changes:

$$\mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] = \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)]$$

If SUTVA fails (spillovers, General Equilibrium effects, contamination), $Y_{s,2}(0)$ or $Y_{n,2}(0)$ are distorted by others' treatment, so the control group no longer mimics the treated group's **untreated** change.

Why 2×2 DiD recovers ATT

DiD estimator (2×2):

$$\text{DiD} = (\mathbf{Y}_{s,2} - \mathbf{Y}_{s,1}) - (\mathbf{Y}_{n,2} - \mathbf{Y}_{n,1}).$$

Rewrite observed outcomes as potential outcomes:

$$\text{DiD} = (\mathbf{Y}_{s,2}(1) - \mathbf{Y}_{s,1}(0)) - (\mathbf{Y}_{n,2}(0) - \mathbf{Y}_{n,1}(0)).$$

Add & subtract the missing counterfactual $\mathbf{Y}_{s,2}(0)$ for the treated at $t = 2$:

$$\text{DiD} = \underbrace{(\mathbf{Y}_{s,2}(1) - \mathbf{Y}_{s,2}(0))}_{\text{treatment effect in } s \text{ at } t = 2} + \left[(\mathbf{Y}_{s,2}(0) - \mathbf{Y}_{s,1}(0)) - (\mathbf{Y}_{n,2}(0) - \mathbf{Y}_{n,1}(0)) \right].$$

Take expectations and impose Parallel Trends Assumption:

$$\begin{aligned} \mathbb{E}[\text{DiD}] &= \mathbb{E}[\mathbf{Y}_{s,2}(1) - \mathbf{Y}_{s,2}(0)] + \underbrace{\mathbb{E}[\mathbf{Y}_{s,2}(0) - \mathbf{Y}_{s,1}(0)] - \mathbb{E}[\mathbf{Y}_{n,2}(0) - \mathbf{Y}_{n,1}(0)]}_{= 0 \text{ by Parallel Trends Assumption}} \\ &= \mathbb{E}[\mathbf{Y}_{s,2}(1) - \mathbf{Y}_{s,2}(0)] = \text{ATT}_{s,2}. \end{aligned}$$

Interpretation

In a clean 2×2 switcher design, the DiD equals the average treatment effect on the treated for the switching group in the post period, provided the untreated trends are parallel across s and n .

DiD as two-way fixed effects (TWFE)

To estimate effects of a treatment/policy on an outcome, researchers often run two-way fixed effects (TWFE) regressions:

$$Y_{g,t} = \alpha_g + \gamma_t + \beta_{\text{fe}} D_{g,t} + \varepsilon_{g,t}.$$

where:

- ▶ α_g : group (e.g. county) fixed effect
- ▶ γ_t : time (e.g. year) fixed effect
- ▶ $D_{g,t}$: realized treatment indicator ($= 1$ if treated in group g at time t , 0 otherwise)

Most DiDs were estimated via TWFE

26 of the 100 most cited AER papers (2015–2019) estimate TWFE
(de Chaisemartin & D'Haultfoeuille, 2021).

Also widely used in political science, sociology, and environmental sciences.

11.3: Event Studies and Dynamic Effects

Motivation: Beyond a Single Treatment Effect

The basic DiD gives a single average post-treatment effect. But often we want to know:

- ▶ **When** effects appear, do they build up or fade out? Are they constant?
- ▶ Whether there are **differential trends** before treatment.
- ▶ How long effects persist after exposure.

Idea: Unpack the DiD by event time

Define for each unit i :

$$G_i = \text{first period when } D_{i,t} = 1, \quad \text{Event time: } k = t - G_i.$$

We then interact the treatment indicator with dummies for event time:

$$D_{i,t} \times \mathbf{1}\{t - G_i = k\}.$$

Each interaction measures the treatment effect k periods after (or before) treatment.

The Event-Study Regression

A conventional specification is:

$$Y_{i,t} = \alpha_i + \lambda_t + \sum_{k \neq -1} \beta_k (D_i \times \mathbf{1}\{t - G_i = k\}) + \varepsilon_{i,t}.$$

- ▶ α_i : unit fixed effects remove permanent differences.
- ▶ λ_t : time fixed effects absorb aggregate shocks.
- ▶ $D_i \times \mathbf{1}\{t - G_i = k\}$: interaction capturing the treatment status at event time k .
- ▶ The omitted dummy ($k = -1$) is the **reference period**.

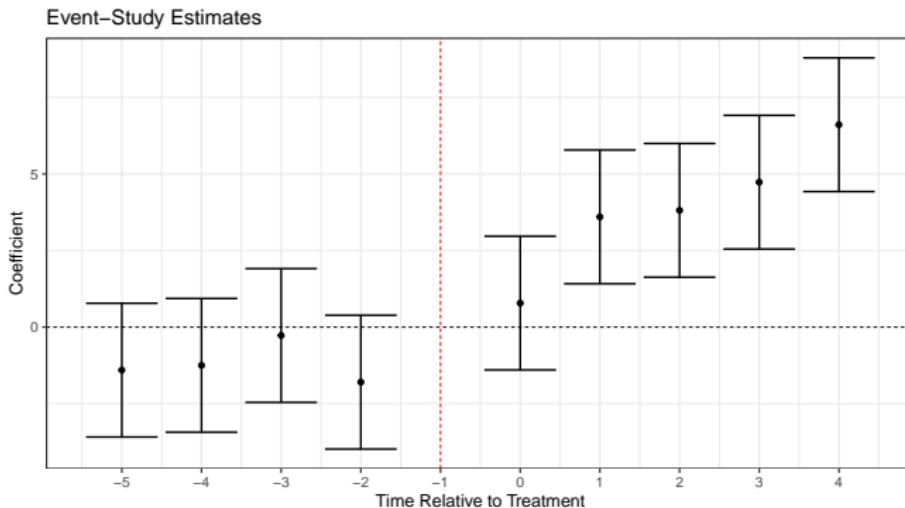
Interpretation

$$\beta_k = \begin{cases} \text{Effect } k \text{ periods after treatment,} & k \geq 0, \\ \text{Difference } k \text{ periods before treatment,} & k < 0. \end{cases}$$

⇒ Pre-treatment coefficients ($k < 0$) test the **observable part of the parallel-trends assumption**.

Visualizing Dynamic Effects

Plotting $\hat{\beta}_k$ with confidence intervals shows how outcomes evolve relative to the last pre-treatment period ($k = -1$):



- ▶ **Leads ($k < 0$):** should hover around zero if pre-treatment trends are parallel.
- ▶ **Lags ($k \geq 0$):** show the treatment dynamics, do effects grow or fade?

When Event-Study Plots Mislead

Even though event-studies are intuitive, they can be misleading:

- ▶ **Endogenous timing:** units may adopt treatment because of pre-existing outcome trends. \Rightarrow apparent “effects” before treatment may reflect selection.
- ▶ **Selective composition:** for large k , only early adopters remain observed, so late effects mix dynamics with who is still in sample.
- ▶ **Staggered adoption under TWFE:** already-treated units serve as controls for later-treated ones, so $\widehat{\beta}_k$ combines different causal horizons with possibly negative weights.

11.4: The Problems with TWFE

The Problem with TWFE

Core intuition

TWFE assumes one common treatment effect for everyone, forever. When effects differ by group or timing, this average can get distorted.

What goes wrong:

- ▶ With staggered adoption, already-treated groups act as "*controls*".
 - ⇒ Some comparisons can get **negative or weird weights**.
 - ⇒ The overall estimate can even flip sign.

Next: We will see this in a decomposition of $\widehat{\beta}_{FE}$ into all possible 2×2 comparisons based on de Chaisemartin & D'Haultfoeuille (2021)

Sketch of the Decomposition of $\widehat{\beta}_{FE}$

Start from the TWFE model:

$$Y_{g,t} = \alpha_g + \gamma_t + \beta_{FE} D_{g,t} + u_{g,t}$$

By the Frisch–Waugh–Lovell theorem:

$$\widehat{\beta}_{FE} = \frac{\sum_{g,t} \tilde{D}_{g,t} \tilde{Y}_{g,t}}{\sum_{g,t} \tilde{D}_{g,t}^2}, \quad \tilde{D}_{g,t} = D_{g,t} - \bar{D}_{g,t}$$

Step 1: Express residualized treatment $\tilde{D}_{g,t}$ as deviations from group and time means:

$$\tilde{D}_{g,t} = D_{g,t} - \bar{D}_{g\cdot} - \bar{D}_{\cdot t} + \bar{D}$$

Step 2: Insert this into the covariance term $\sum \tilde{D}_{g,t} \tilde{Y}_{g,t}$ and rearrange by pairs of treatment changes across (g, t)

Main Idea:

Each nonzero $\tilde{D}_{g,t}$ comes from a group that **changes treatment status relative to other groups or periods**

⇒ The estimator can be written as a weighted sum of all possible 2×2 DiD contrasts.

How FWL builds the residual $\tilde{D}_{g,t}$

Goal: Remove what $D_{g,t}$ shares with group and time patterns

Step 1: Start from the full treatment indicator

Each cell starts with its observed treatment $D_{g,t}$

Step 2: Subtract the group mean \bar{D}_g .

Removes how “treated on average” this group is over time
⇒ Controls for permanent differences between groups

Step 3: Subtract the time mean $\bar{D}_{\cdot t}$

Removes how many groups are treated in this period overall
⇒ Controls for common time shocks or trends

Step 4: Add back the grand mean \bar{D}

We subtracted that global average twice, once in each step, so we put one copy back to keep the overall mean at zero

$$\tilde{D}_{g,t} = D_{g,t} - \bar{D}_g - \bar{D}_{\cdot t} + \bar{D}$$

Potential Outcomes in the Decomposition

Each cell (g, t) has potential outcomes:

$$Y_{g,t}(1), \quad Y_{g,t}(0)$$

and a treatment effect

$$TE_{g,t} = Y_{g,t}(1) - Y_{g,t}(0)$$

Observed outcomes:

$$Y_{g,t} = Y_{g,t}(0) + D_{g,t} TE_{g,t}$$

Residualized version:

$$\tilde{Y}_{g,t} = \tilde{Y}_{g,t}(0) + \tilde{D}_{g,t} TE_{g,t}$$

Plug into FWL:

$$\sum_{g,t} \tilde{D}_{g,t} \tilde{Y}_{g,t} = \sum_{g,t} \tilde{D}_{g,t} \tilde{Y}_{g,t}(0) + \sum_{g,t} \tilde{D}_{g,t}^2 TE_{g,t}$$

Why the first term drops out

Under the parallel trends assumption:

$$\mathbb{E}[Y_{g,t}(0) \mid g, t] = \alpha_g + \gamma_t \quad \Rightarrow \quad \tilde{Y}_{g,t}(0) \text{ has zero covariance with } \tilde{D}_{g,t}$$

$$\mathbb{E}[\tilde{D}_{g,t} \tilde{Y}_{g,t}(0)] = 0$$

Intuition:

- ▶ The untreated potential outcome only reflects group and time patterns
- ▶ Those same patterns were already “partialed out” of $D_{g,t}$ by the FWL residualization
- ▶ \Rightarrow Once group and time means are removed, there’s no systematic relation left between $\tilde{D}_{g,t}$ and $\tilde{Y}_{g,t}(0)$

Hence:

$$\mathbb{E}[\hat{\beta}_{FE}] = \mathbb{E}\left[\frac{\sum_{g,t} \tilde{D}_{g,t}^2 TE_{g,t}}{\sum_{g,t} \tilde{D}_{g,t}^2}\right]$$

How Residualized Treatment Creates Contrasts

$$\tilde{D}_{g,t} = D_{g,t} - \bar{D}_{g\cdot} - \bar{D}_{\cdot t} + \bar{D}$$

- ▶ Each $\tilde{D}_{g,t}$ is a **deviation** from both its group's and the period's average treatment.
- ▶ A large positive $\tilde{D}_{g,t}$ means "newly treated" relative to others.
- ▶ A large negative $\tilde{D}_{g,t}$ means "already treated" when others are not.

Intuition

Residualization turns $D_{g,t}$ into a measure of how much that cell's treatment status **changes relative to the comparison groups and periods**.

$$\mathbb{E}[\hat{\beta}_{FE}] = \mathbb{E}\left[\frac{\sum_{g,t} \tilde{D}_{g,t}^2 TE_{g,t}}{\sum_{g,t} \tilde{D}_{g,t}^2}\right]$$

is therefore an average of **treatment effects weighted by these relative changes**.

Each Residual Implies a 2×2 DiD Comparison

For any two groups and periods (g, g', t, t') :

$$\Delta D_{g,t;t'} = (D_{g,t} - D_{g,t'}) - (D_{g',t} - D_{g',t'})$$

- ▶ If one group changes treatment while the other does not, $\Delta D_{g,t;t'} = \pm 1$.
- ▶ The corresponding outcome contrast

$$\Delta Y_{g,t;t'} = (Y_{g,t} - Y_{g,t'}) - (Y_{g',t} - Y_{g',t'})$$

is a standard 2×2 Difference-in-Differences.

- ▶ Summing all such comparisons with $\tilde{D}_{g,t}$ weights reproduces the TWFE estimator:

$$\sum_{g,t} \tilde{D}_{g,t} \tilde{Y}_{g,t} = \sum_{(g,t)} \omega_{g,t} \Delta Y_{g,t;t'}$$

Thus: TWFE aggregates all possible 2×2 DiD contrasts in the data.

The Weighted-Average Representation

Collecting all 2×2 comparisons yields:

$$\mathbb{E}[\hat{\beta}_{FE}] = \mathbb{E} \left[\sum_{(g,t): D_{g,t} \neq 0} W_{g,t} TE_{g,t} \right], \quad W_{g,t} = \frac{\tilde{D}_{g,t}^2}{\sum_{g',t'} \tilde{D}_{g',t'}^2}, \quad \sum W_{g,t} = 1.$$

- ▶ Each $W_{g,t}$ reflects how strongly that cell's treatment pattern deviates from group and period averages.
- ▶ If some $\tilde{D}_{g,t}$ are negative (already-treated groups), their cells receive **negative weights**.
- ▶ These negative weights can distort the overall estimate when effects differ by timing.

Takeaway

$\hat{\beta}_{FE}$ is a weighted average of all cell-level treatment effects. Weights depend on treatment-timing heterogeneity and can even be negative.

What TWFE actually estimates

$$\mathbb{E}[\hat{\beta}_{FE}] = \mathbb{E} \left[\sum_{(g,t): D_{g,t} \neq 0} W_{g,t} TE_{g,t} \right], \quad W_{g,t} = \frac{\tilde{D}_{g,t}^2}{\sum_{g',t'} \tilde{D}_{g',t'}^2}, \quad \sum W_{g,t} = 1.$$

- ▶ **Combines all 2×2 comparisons** where treatment changes for one group vs. another.
- ▶ **Comparison types:**
 1. **Switchers vs. never/not-yet treated:** What we want
 2. **Early vs. late switchers:** Mixes timing effects
 3. **Switchers vs. already-treated** \Rightarrow possible **negative weights.**
- ▶ Negatives arise when already-treated units act as (implicit) controls.

Why it matters

- ▶ With heterogeneous effects, TWFE's weighted mean can be **biased or even sign-reversed.**
- ▶ $\hat{\beta}_{FE}$ rarely reflects a single "true" effect under staggered adoption.

What Does TWFE Weight?

We decomposed β_{TWFE} into ATTs. Now we introduce another useful decomposition:

Goodman-Bacon (GB):

- ▶ **Unit:** Weighted avg. of **2x2 DiD** designs.
- ▶ **Weights:** **Non-negative**, sum to 1
⇒ which timing contrasts drive TWFE.
- ▶ **Pitfall:** Some designs (e.g., later-as-control) can flip sign with dynamics.

de Chaisemartin & D'Haultfoeuille (dCdH):

- ▶ **Unit:** Weighted sum of $\text{ATT}_{g,t}$ (cohort \times time).
- ▶ **Weights:** **Can be negative** ⇒ $\hat{\beta}_{\text{TWFE}}$ not a convex avg.
- ▶ **Use:** Shows which g, t cells TWFE (de-)emphasizes.

Key takeaway

GB: Which designs drive TWFE?

dCdH: Which $\text{ATT}_{g,t}$ does TWFE (even negatively) weight?

K^2 distinct DiDs

Let there be K different **treatment timing groups** and one never-treated group U .

- ▶ For each ordered pair of timing groups (j, b) we can form a canonical 2×2 DiD where j is treated and b is the comparison.
- ▶ This gives K^2 **distinct** 2×2 **DiDs** (including comparisons to the never-treated group).

Example: Three timing groups a, b, c and one untreated group U .

a to b	b to a	c to a
a to c	b to c	c to b
a to U	b to U	c to U

Example DiD with two timing groups

To keep intuition simple, we now focus on only two timing groups:

- ▶ an **early** group k treated at time t_k^* ,
- ▶ a **late** group l treated at time t_l^* ,
- ▶ and a never-treated group U .
- ▶ k, l are defined by the **time of treatment adoption** (t_k^*, t_l^*) , with k treated earlier than l .
- ▶ \bar{D}_k : share of periods in which group k is treated.
- ▶ $\widehat{\delta}_{jb}^{2 \times 2}$: canonical 2×2 DiD estimator comparing treatment group j to comparison group b .
- ▶ In the Bacon decomposition, the TWFE estimate is a weighted average of these $\widehat{\delta}_{jb}^{2 \times 2}$ terms, with weights depending on variation in treatment timing and group sizes.

2×2 DiDs with two timing groups

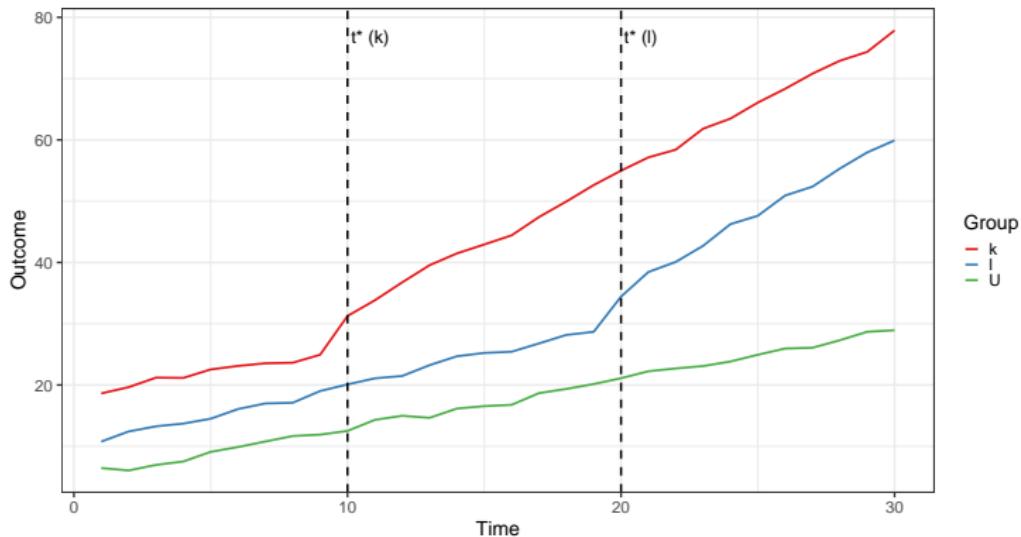
Each treated group can be compared to the others to form a canonical 2×2 DiD:

Treated	Comparison	Interpretation
k	l	Early vs. late group
l	k	Late vs. early group
k	U	Early vs. never-treated
l	U	Late vs. never-treated

This yields **four distinct ordered 2×2 DiD comparisons**

Illustration: Our Example

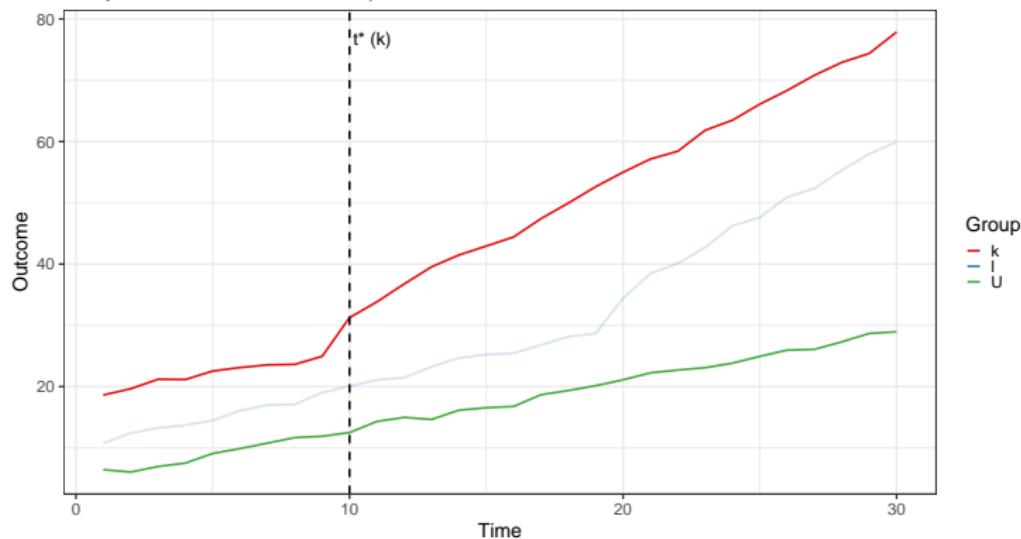
Staggered adoption: k early, l late, U never



Early Group vs. Never-Treated Group

$$\widehat{\delta}_{kU}^{2 \times 2} = \left(\bar{y}_k^{\text{post}(k)} - \bar{y}_k^{\text{pre}(k)} \right) - \left(\bar{y}_U^{\text{post}(k)} - \bar{y}_U^{\text{pre}(k)} \right)$$

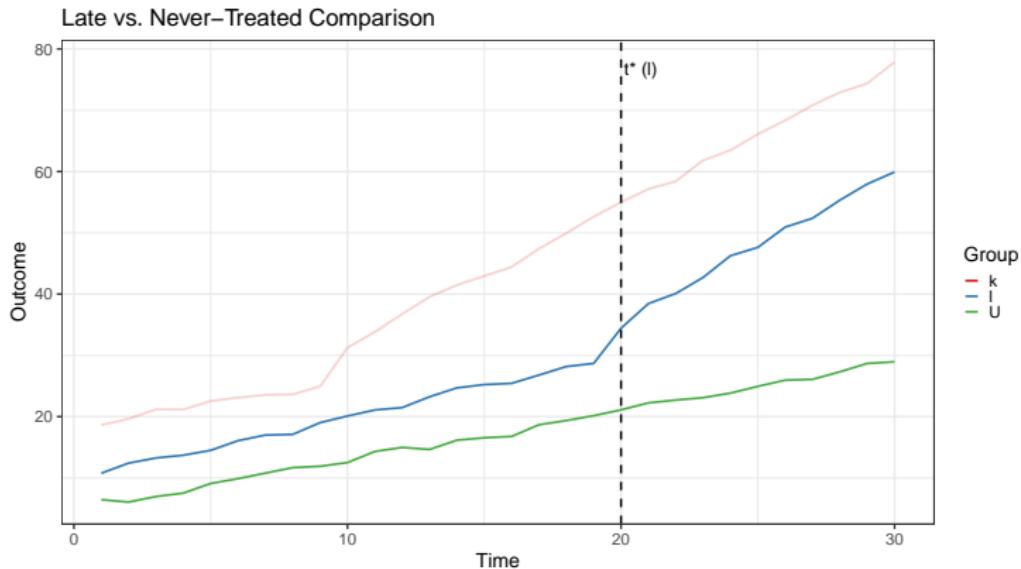
Early vs. Never-Treated Comparison



A. Early group k compared to never-treated U around t_k^* .

Late Group vs. Never-Treated Group

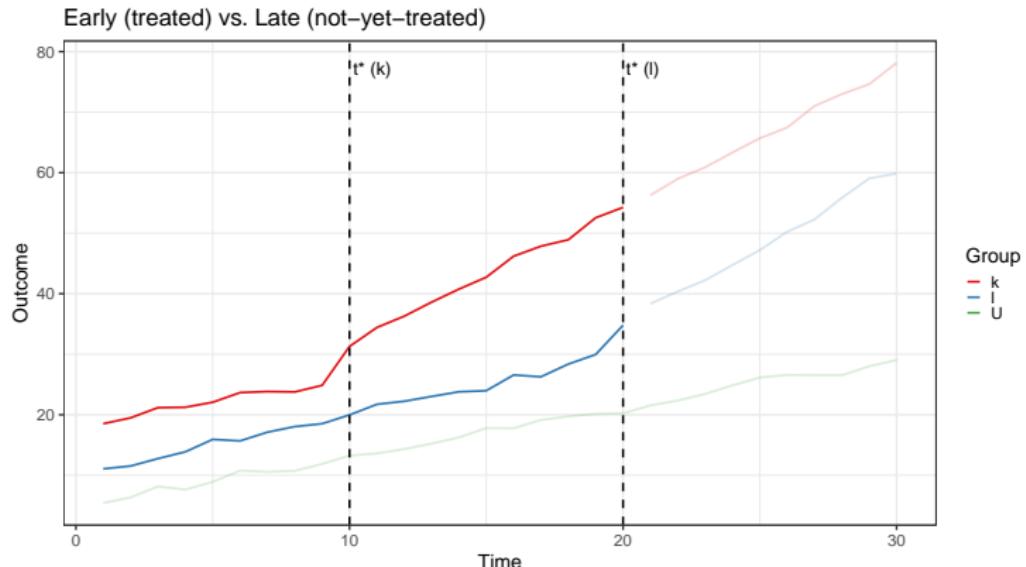
$$\widehat{\delta}_{IU}^{2 \times 2} = \left(\bar{y}_I^{\text{post}(I)} - \bar{y}_I^{\text{pre}(I)} \right) - \left(\bar{y}_U^{\text{post}(I)} - \bar{y}_U^{\text{pre}(I)} \right)$$



B. Late group I compared to never-treated U around t^* .

Early Group vs. Late Group, before t_l^*

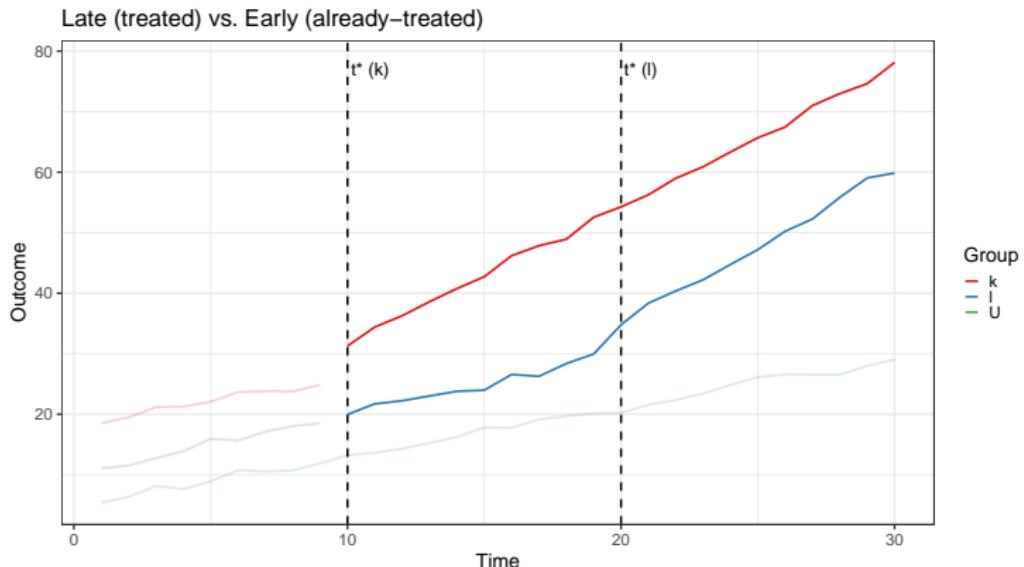
$$\delta_{kl}^{2 \times 2, k} = \left(\bar{y}_k^{MID(k,l)} - \bar{y}_k^{PRE(k)} \right) - \left(\bar{y}_l^{MID(k,l)} - \bar{y}_l^{PRE(k)} \right)$$



C. Early group k treated, late group l not-yet treated; comparison uses only periods before t_l^* .

Late Group vs. Early Group, after t_k^*

$$\delta_{lk}^{2 \times 2, I} = \left(\bar{y}_I^{POST(k, l)} - \bar{y}_I^{MID(k, l)} \right) - \left(\bar{y}_k^{POST(k, l)} - \bar{y}_k^{MID(k, l)} \right)$$



D. Late group l treated, early group k already treated; comparison uses only periods after t_k^* .

Bacon decomposition

Consider the TWFE regression estimated at the group level:

$$Y_{ist} = \beta_0 + \delta D_{ist} + \tau_t + \sigma_s + \varepsilon_{ist}$$

With two treated groups (k, l) and one never-treated group (U), the TWFE estimator of $\widehat{\delta}$ can be written as a weighted average of four distinct 2×2 DiDs:

$$\widehat{\delta}^{TWFE} = \sum_{k \neq U} s_{kU} \widehat{\delta}_{kU}^{2 \times 2} + \sum_{k \neq U} \sum_{l > k} s_{kl} \left[\mu_{kl} \widehat{\delta}_{kl}^{2 \times 2, k} + (1 - \mu_{kl}) \widehat{\delta}_{lk}^{2 \times 2, l} \right].$$

- ▶ s_{kU}, s_{kl} : non-negative weights that sum to 1.
- ▶ $\widehat{\delta}_{kU}^{2 \times 2}$ and $\widehat{\delta}_{lU}^{2 \times 2}$: DiDs of early/late groups vs. never-treated.
- ▶ $\widehat{\delta}_{kl}^{2 \times 2, k}$: early vs. late using only pre t_l^* periods.
- ▶ $\widehat{\delta}_{lk}^{2 \times 2, l}$: late vs. early using only post t_k^* periods.

How the Weights Are Determined

Weights in the Goodman–Bacon decomposition depend on two ingredients:

- ▶ **Group size:** larger groups \Rightarrow more influence on $\widehat{\delta}^{TWFE}$.
- ▶ **Treatment variance:** groups treated for about half of the sample period get the biggest weight.

$$s_{kU} \propto n_k n_U \bar{D}_k (1 - \bar{D}_k), \quad s_{kl} \propto n_k n_l (\bar{D}_k - \bar{D}_l) [1 - (\bar{D}_k - \bar{D}_l)]$$

Intuition

Weights are largest where there is **most variation** in treatment timing, that is, when groups switch from untreated to treated in the middle of the panel.

Why Some Comparisons Are Dangerous

Not all 2×2 comparisons identify the same causal contrast:

- ▶ Comparisons with never-treated groups are typically valid (if parallel trends hold).
- ▶ Comparisons where **later-treated groups serve as controls** for already-treated groups can pick up treatment dynamics, not counterfactual trends.
- ▶ These comparisons can even **flip the sign** of $\hat{\delta}^{TWFE}$ if effects grow or fade over time.

What the weights teach us

Weights reveal **which timing contrasts drive your estimate**. If much weight falls on “treated vs. treated” comparisons, your TWFE estimate likely mixes treatment effects at different horizons.

Interactive Tools for TWFE Problems

Two excellent interactive Shiny apps from "Causal Inference: The Mixtape" allow you to explore the issues we discussed:

- ▶ **Goodman–Bacon Decomposition App**

- ▶ Bacon Decomposition

Visualizes how TWFE mixes different 2×2 DiDs and how these affect the overall TWFE parameter

- ▶ **Event-Study / TWFE vs. Modern Estimators App**

- ▶ Event-Study Simulation

Compares TWFE event-study estimates to modern alternatives in the same setup as above

Recommended Use

Experiment with treatment timing, heterogeneity, and dynamic effects to see how TWFE behaves—and how modern estimators fix these issues.

From Decomposition to Better Practice

- ▶ Use the Bacon decomposition to **diagnose** what drives your estimate:
 - ▶ Are most weights on valid (treated vs. untreated) DiDs?
 - ▶ Or on questionable (treated vs. treated) ones?
- ▶ If the latter, move to estimators that respect staggered timing:
 - ▶ Stacking or **Sun & Abraham (2020)**, **Callaway & Sant'Anna (2021)**, **de Chaisemartin and D'Haultfoeuille (2020)**.

Takeaway

The Goodman–Bacon decomposition helps us understand *why* TWFE can fail and points the way to designs that avoid those pitfalls.

11.5: Modern Solutions to TWFE Bias

Core Idea: Group-Time Average Treatment Effects

Problem: TWFE pools all treated units together and implicitly assumes a **common treatment effect**. Under staggered adoption, this mixes effects across:

- ▶ different **cohorts** g (time of first treatment)
- ▶ different **relative times** $k = t - G_i$

Solution: Estimate “clean” effects for each cohort and period

$$\text{ATT}(g, t) = \mathbb{E}[Y_{g,t}(1) - Y_{g,t}(0) \mid G_i = g]$$

- ▶ Compare cohort g only to units that are **untreated** at time t .
- ▶ Never uses already-treated cohorts as controls.
- ▶ **All modern estimators** recover $\text{ATT}(g, t)$ in some way.
- ▶ Differences arise in how they aggregate $\text{ATT}(g, t)$ or handle event-time dummies.

Goal: Estimate treatment effects that vary by **cohort** and by **time** since treatment.

Core Idea

For each treatment cohort g and period t :

$$\text{ATT}(g, t) = (\text{change in } g \text{ around } g) - (\text{change in controls not yet treated at } t)$$

Controls: only units that are **never-treated or not-yet-treated**.

- ▶ **Design-based:** builds treatment effects from simple 2×2 DID comparisons.
- ▶ **Cohort-specific parallel trends:** only requires PT for each cohort vs. its valid controls.
- ▶ **Modular:** $\text{ATT}(g, t)$ can be estimated via IPW, regression, or doubly robust methods.

Callaway & Sant'Anna (2021): Details

Group-time ATT:

$$\text{ATT}(g, t) = (\bar{Y}_{g,t} - \bar{Y}_{g,g-1}) - (\bar{Y}_{C(g,t),t} - \bar{Y}_{C(g,t),g-1})$$

where $C(g, t)$ are units untreated at period t .

Identification:

Parallel trends need to hold **within cohort**:

$$\mathbb{E}[Y_{g,t}(0) - Y_{g,g-1}(0)] = \mathbb{E}[Y_{C(g,t),t}(0) - Y_{C(g,t),g-1}(0)]$$

Aggregation into policy parameters

Overall effect:

$$\text{ATT}^{CS} = \sum_{g,t} w_{g,t} \cdot \text{ATT}(g, t)$$

Weights:

$$w_{g,t} \propto N_g \cdot \mathbf{1}\{t \geq g\}$$

⇒ More weight to larger cohorts and feasible post-treatment periods

Advantages

- ▶ Cohort-specific effects → respects staggered adoption.
- ▶ No treated-vs-treated comparisons.
- ▶ Handles covariates via inverse-probability weighting.
- ▶ Produces estimable objects aligned with economic questions.

Disadvantages

- ▶ **Efficiency loss:** Each $ATT(g, t)$ uses only units that are still untreated at time t .
- ▶ Precision varies: some cohorts have few units left untreated at certain times.

Sun & Abraham (2021): Core Idea

Problem solved: TWFE event studies are contaminated because already-treated units act as controls.

Core Idea

Interacting cohort g with **relative time** k :

$$\beta_{g,k} = \text{ATT}(g, g + k)$$

Event-study coefficient is a **clean aggregation**:

$$\beta_k^{\text{SA}} = \sum_g \omega_{g,k} \beta_{g,k}$$

- ▶ **Residualized TWFE:** orthogonalizes cohort \times time patterns to remove treated-as-control problems
- ▶ **Convex aggregation:** final dynamic effects are weighted averages with **non-negative weights**

Cohort-specific relative-time effects:

$$\beta_{g,k} = \text{ATT}(g, g + k)$$

Aggregation across cohorts

For each event time k :

$$\beta_k^{\text{SA}} = \sum_g \omega_{g,k} \cdot \text{ATT}(g, g + k)$$

Weights:

$$\omega_{g,k} = \frac{N_g \cdot \mathbf{1}\{g + k \leq T\}}{\sum_{g'} N_{g'} \cdot \mathbf{1}\{g' + k \leq T\}}$$

Interpretation

- ▶ Only cohorts for which event time k is observed contribute.
- ▶ Larger cohorts receive more weight.
- ▶ No treated-vs-treated comparisons → no contamination.

Advantages

- ▶ Pre-trends ($k < 0$) are unbiased: only uses not-yet-treated controls.
- ▶ No negative weights or sign reversals.
- ▶ Provides interpretable dynamic effects over event time.

Disadvantages

- ▶ Only an **event-study method**: does not give one overall ATT.
- ▶ For some event times, only a subset of cohorts provide information \Rightarrow estimates near the edges can be noisy.
- ▶ Interpretation becomes harder when few groups contribute at a given relative time.
- ▶ Requires enough pre-treatment periods for each cohort to check pre-trends.

Goal: Recover unbiased treatment effects in staggered DiD **without** assuming homogeneous effects and **without** using treated units as controls.

$$Y_{it}(0) = \alpha_i + \beta_t$$

1. Estimate untreated potential outcomes using **only never-treated or not-yet-treated units**.
2. Impute counterfactual untreated outcomes:

$$\hat{Y}_{it}(0) = \hat{\alpha}_i + \hat{\beta}_t$$

3. Estimate cell-level treatment effects:

$$\hat{\tau}_{it} = Y_{it} - \hat{Y}_{it}(0)$$

4. Aggregate with weights w_{it} to get any ATT estimand:

$$\widehat{\text{ATT}}_w = \sum_{it \in \Omega_1} w_{it} \hat{\tau}_{it}$$

Key insight: All unbiased DiD estimators can be written in this form; BJS derive the **unique efficient** one.

Model for untreated outcomes

$$Y_{it}(0) = \alpha_i + \beta_t + \varepsilon_{it}$$

This is estimated **only on untreated observations**:

Never-treated or not-yet-treated.

Efficient estimator under unrestricted heterogeneity:

$$\hat{\tau}_{it} = Y_{it} - \hat{\alpha}_i - \hat{\beta}_t$$

Aggregate via:

$$\hat{\tau}_w^* = \sum_{it \in \Omega_1} w_{it} \hat{\tau}_{it}$$

Identification requirements:

- ▶ Parallel trends in $Y_{it}(0)$ (unit FE + time FE structure)
- ▶ No anticipation for untreated it
- ▶ Enough untreated support to estimate FE structure
- ▶ Estimand ATT_w must be identified (no ATT beyond comparable horizons)

BJS with Repeated Cross-Sections (I): Why It Matters

Many empirical DiD applications use repeated cross-sections:

CPS, ACS, LFS, Eurostat LFS, DHS, household surveys, etc.

Problem: In repeated cross-sections, we **cannot** estimate unit fixed effects α_i because the same units are not followed over time.

BJS solution: Replace unit FE with a **flexible function of covariates**:

$$\mathbb{E}[Y_{it}(0) \mid X_i, t] = m(X_i) + \beta_t.$$

- ▶ Estimate $m(X_i)$ using untreated observations
- ▶ Impute counterfactuals:

$$\hat{Y}_{it}(0) = \hat{m}(X_i) + \hat{\beta}_t$$

- ▶ Proceed exactly as in the panel case:

$$\hat{\tau}_{it} = Y_{it} - \hat{Y}_{it}(0)$$

Assumption becomes:

$$\mathbb{E}[Y_{it}(0) \mid X_i, t] = m(X_i) + \beta_t$$

rather than unit-specific α_i .

- ▶ This is the standard **conditional parallel trends** assumption used in repeated cross-sections.
- ▶ No treated units are ever used as controls for others.
- ▶ Flexible $m(X)$ allows rich composition adjustment across years.

Why this is useful:

- ▶ Works when panel data are unavailable or impossible (e.g. rotating surveys).
- ▶ Avoids limitations of TWFE and event-study estimators in repeated XS.
- ▶ Often more efficient than IPW-based repeated-XS DiD methods.

Advantages

- ▶ Unbiased under **arbitrary** treatment-effect heterogeneity.
- ▶ Efficient among all linear unbiased estimators under spherical errors.
- ▶ Works with covariates, triple-differences, repeated cross-sections.
- ▶ Clean separation of pre-trend testing and effect estimation.

Disadvantages

- ▶ Needs many untreated observations to estimate FE precisely.
- ▶ Efficiency gains shrink with strong serial correlation.
- ▶ Cannot identify long-run effects beyond comparison window.
- ▶ Requires two-step implementation (though computationally fast).

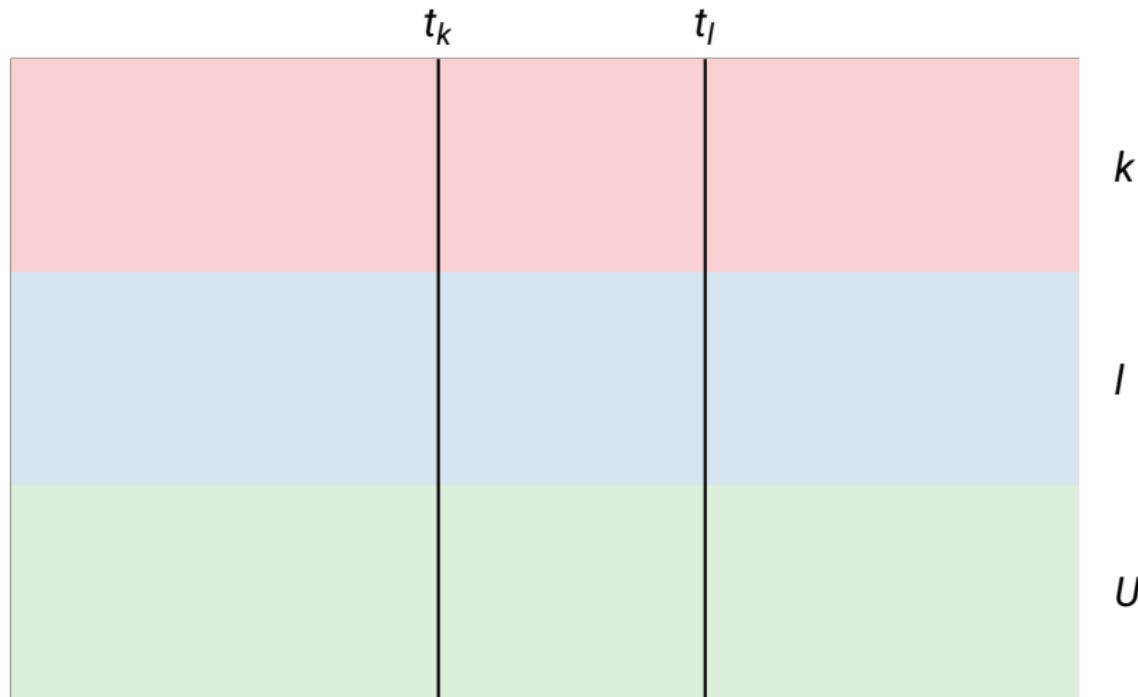
Core Idea: Stacked Difference-in-Differences

Idea: Build a separate “clean” DID for each adoption event (sub-experiment) and **stack** them vertically into one dataset.

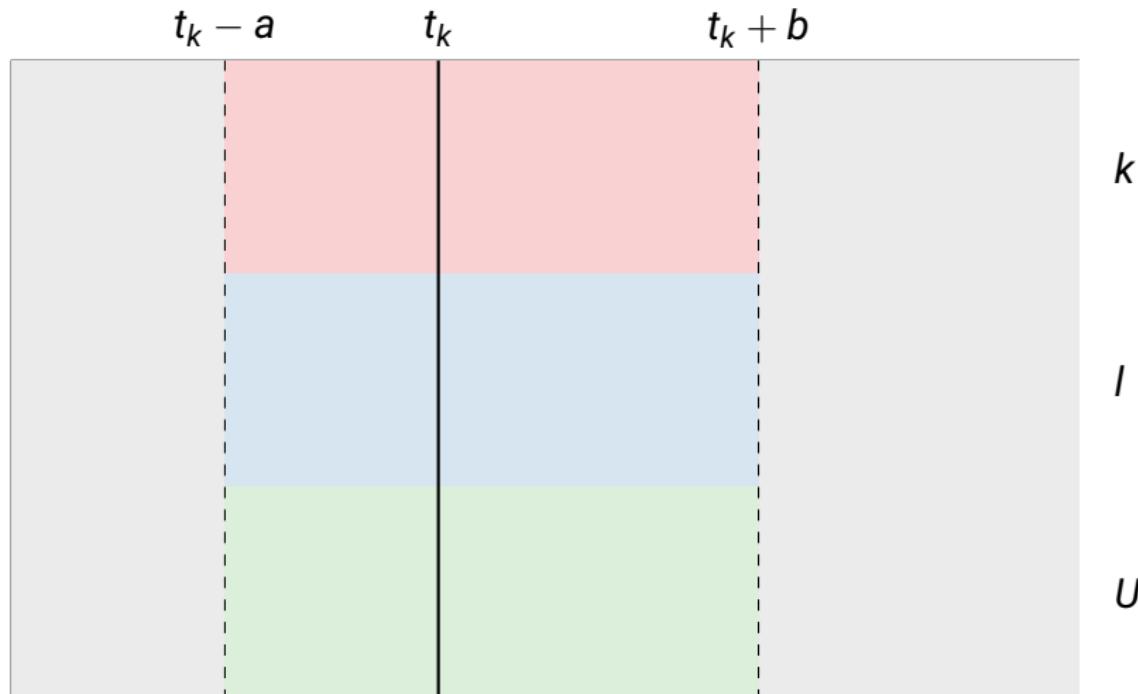
- ▶ Removes contaminated late-vs-early comparisons from TWFE.
- ▶ Each sub-experiment includes only:
 - ▶ Units first treated at a
 - ▶ “Clean controls” not yet treated at event time
- ▶ Run a single TWFE DID or event-study regression on the stacked data.

Goal: Recover an average causal effect by pooling multiple valid 2x2 DIDs.

Stacking: The data with an imbalanced treatment times

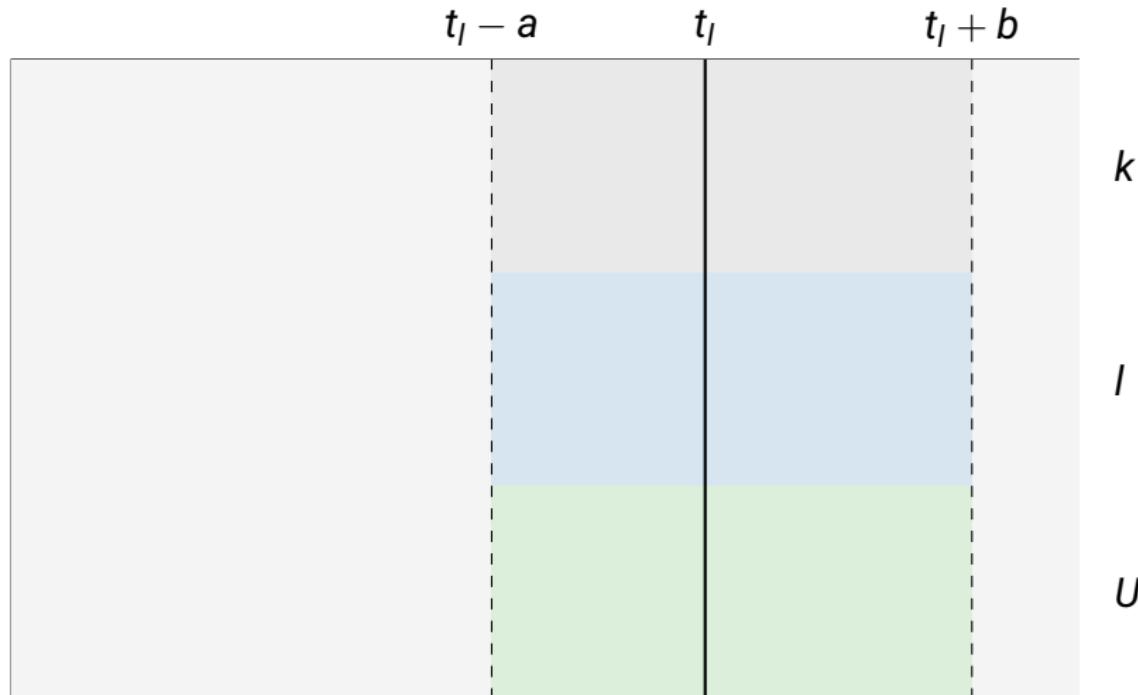


Stacking: Creating the k -dataset



Choose max pre ($-a$) and post ($+b$) periods

Stacking: Creating the l -dataset



Choose max pre ($-a$) and post ($+b$) periods

Already-treated k observations are dropped as controls for l

Stacking: Estimation after creating the datasets

Goal: Estimate dynamic treatment effects using the two clean treatment-control datasets (for groups k and l).

Classical steps for stacking:

1. **Stack the two trimmed datasets**

Each row corresponds to a triple:

$$(s, g, e) \quad \text{unit, cohort } g \in \{k, l\}, \quad e = t - t_g$$

Only observations inside the window $[t_g - a, t_g + b]$ appear.

2. **Estimate an event-study regression on the stack**

$$Y_{sge} = \alpha_g + \lambda_e + \sum_{e \neq -1} \beta_e \cdot 1\{e\} + \varepsilon_{sge}$$

with:

- ▶ cohort fixed effects α_g ,
- ▶ relative-time indicators $1\{e\}$,
- ▶ $e = -1$ as the omitted category.

Stacking: Identification Problem

Problem (Wing, Freedman & Hollingsworth, 2024): The **unweighted** stacked DID does not identify

- ▶ the ATT,
- ▶ any causal aggregate of ATTs,
- ▶ nor any convex combination of treatment effects.

Reason: Implicit differential weighting (core failure)

$$DID_e^{\text{stack}} = \sum_j \frac{N_j^D}{N^D} \Delta Y_{j,e}^D - \sum_j \frac{N_j^C}{N^C} \Delta Y_{j,e}^C$$

- ▶ Treated trends weighted by N_j^D / N^D
- ▶ Control trends weighted by N_j^C / N^C

⇒ **Weights differ across treated and control arms.**

Even if parallel trends hold **within every sub-experiment**, these untreated trends **do not cancel**, so:

$$DID_e^{\text{stack}} \neq \text{ATT}(a, a + e) \quad (\text{not any meaningful causal parameter}).$$

Stacking: Pros and Cons

Advantages

- ▶ Conceptually simple: regression-based estimator familiar to applied researchers.
- ▶ Makes research designs explicit (each sub-experiment is a clean 2x2 DID).
- ▶ Easy to implement dynamic effects/event studies.

Disadvantages (critical)

- ▶ **Bias:** Classic stacked regressions apply different implicit weights to treated and control groups across sub-experiments
⇒ **not a causal estimand.**
- ▶ Not a convex combination of ATTs.
- ▶ Compositional change across event time unless data are trimmed.
- ▶ Requires corrective weights to identify the trimmed aggregate ATT.

Where We Go Next

- ▶ So far: modern DiD methods correct TWFE's weighting and timing problems.
- ▶ But all still rely on a (conditional) parallel trends assumption.
- ▶ **Synthetic DiD** relaxes this by blending synthetic controls with DiD.
- ▶ It allows for data-driven construction of untreated counterfactuals.

11.6: Synthetic Difference-in-Differences

Why Talk About Synthetic Control in a DiD Lecture?

We will introduce synthetic control first. It was developed for settings, where **parallel trends are doubtful**, especially for a **single treated unit**

- ▶ SC solves exactly the core DiD problem: How do we build a credible counterfactual trend?
- ▶ Many real-world applications combine:
- ▶ It naturally leads to **Synthetic Difference-in-Differences** (Arkhangelsky et al., 2021), a hybrid approach

Roadmap: SC → California smoking ban → placebo inference → multi-unit generalization → Synthetic DiD

Synthetic Control: Core Idea

Abadie, Diamond & Hainmueller (2010, 2015): Construct a “synthetic” untreated unit that recreates the treated unit’s **pre-treatment path**.

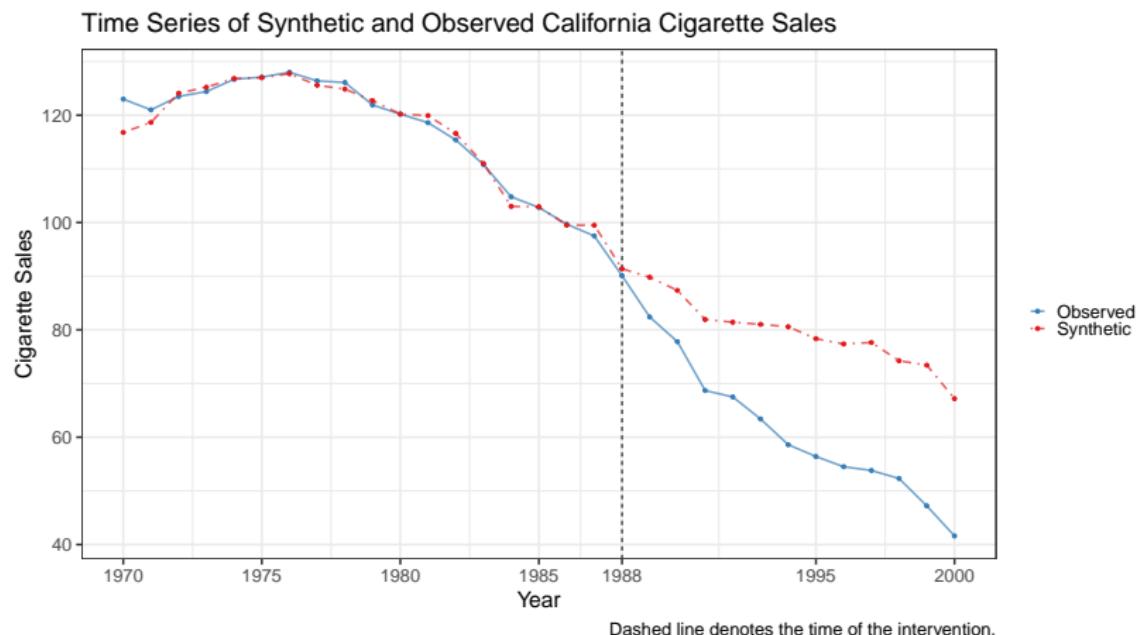
- ▶ **Example Treated unit:** e.g. California (Prop 99, 1988 tobacco control program)
- ▶ **Donor pool:** other US states never adopting the reform in that period
- ▶ Find weights $w_j \geq 0, \sum_j w_j = 1$ s.t.

$$Y_{\text{CA, pre}} \approx \sum_j w_j Y_{j,\text{pre}}$$

- ▶ **Synthetic CA** = weighted average of control states that best replicate CA’s pre-1988 cigarette sales.

Motivation: If synthetic CA matches actual CA well before treatment, then deviations after treatment represent the treatment effect.

Example: Did California's 1988 Smoking Ban Reduce Cigarette Sales?



Pre-treatment Fit: The Heart of Synthetic Control

Pre-treatment match is the credibility test

- ▶ If synthetic CA reproduces CA's **trend** and **level**, the donor pool is a valid counterfactual.
- ▶ Large pre-treatment Error → poor match → synthetic control unreliable
- ▶ A good synthetic control should:
 - ▶ track treated unit year-by-year pre-treatment
 - ▶ replicate all main covariates (e.g., income, demographics)

Summary: Synthetic control is fundamentally about building a credible counterfactual trend. The better the pre-treatment match, the more trustworthy the post-treatment estimates

Multiple Predictors in Synthetic Control

Synthetic control matches the treated unit to a weighted average of donors using a **vector of predictors**, not just the outcome:

$$X_{\text{treated}} \approx X_w = \sum_{j \in C} w_j X_j.$$

Predictors often include:

- ▶ lagged outcomes (in the example: cigsales 1975, 1980, 1988)
- ▶ averages over windows (here for income, cigarette prices, demographics)
- ▶ additional behavioral variables (here: beer consumption)

Motivation: If donors match California on these predictors, they form a credible synthetic counterfactual.

How Synthetic Control Chooses Unit Weights

Weights w_j create the synthetic unit:

$$\text{Synthetic} = \sum_j w_j Y_{j,t}, \quad w_j \geq 0, \quad \sum_j w_j = 1.$$

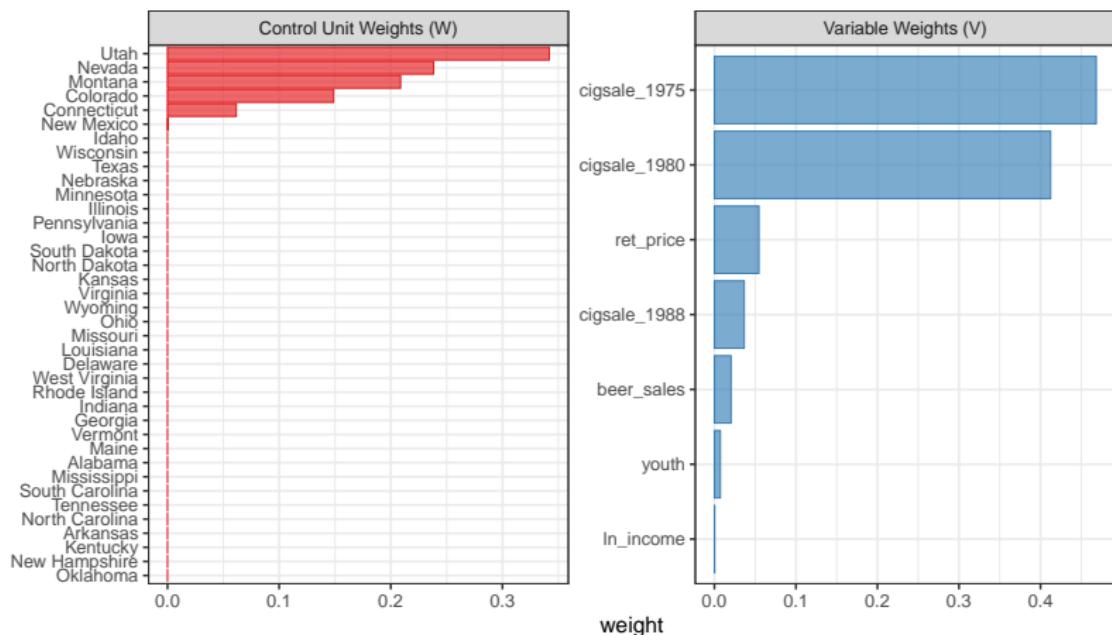
They are chosen to minimize the discrepancy in predictors:

$$\min_w (X_{\text{CA}} - X_w)' V (X_{\text{CA}} - X_w).$$

Interpretation:

- ▶ Units that closely match California across all predictors receive high weights.
- ▶ Poorly matching states receive weights near zero.
- ▶ The predictor importance matrix V emphasizes variables most predictive of pre-trends.
- ▶ We can see how the synthetic unit is composed

Unit Weights in our Example



Placebo Tests: Is California “Special”?

To judge whether CA's gap is meaningful:

In-space placebo test:

- ▶ Pretend each donor state received the 1988 ban.
- ▶ Construct synthetic controls for all donor states.
- ▶ Plot all placebo gaps together with CA's.

Interpretation:

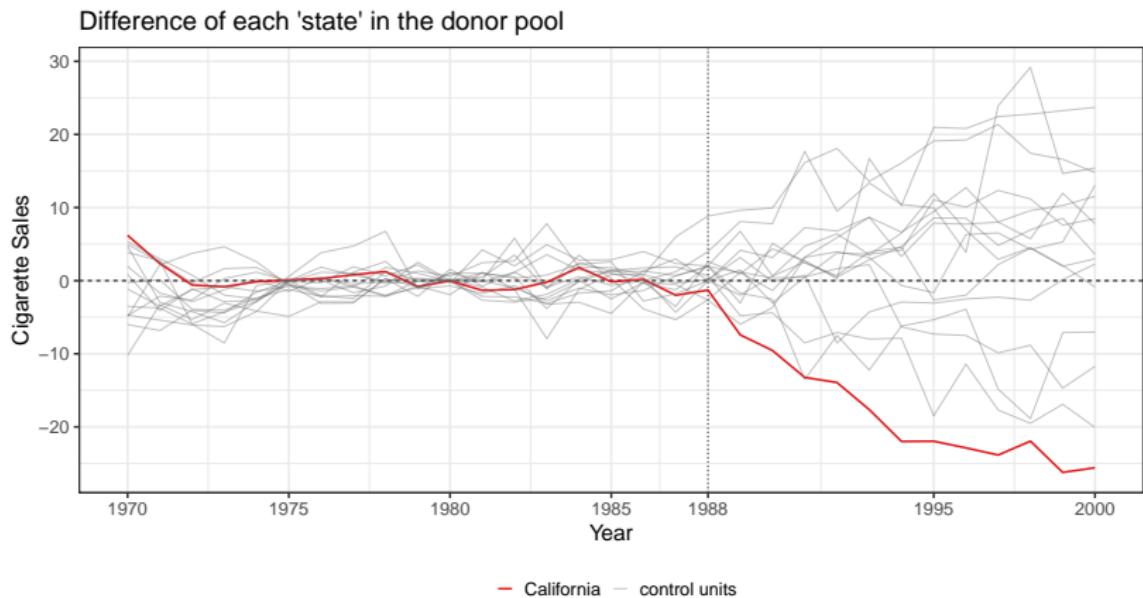
- ▶ If CA's post-treatment gap is among the largest, the effect is unlikely due to chance.
- ▶ If many placebo states show equal/larger gaps, results are weak.

Root Mean Squared Prediction Error ratio test (Abadie et al. 2010):

$$\text{Ratio}_j = \frac{\text{post-RMSPE}_j}{\text{pre-RMSPE}_j}$$

California should be an extreme outlier if Proposition 99 had real effects.

Placebos for our Example



Pruned all placebo cases with a pre-period RMSPE exceeding two times the treated unit's pre-period RMSPE.

Extending Synthetic Control to Multiple Treated Units

Synthetic control was designed for **one treated unit**. But reforms often affect many units at once (*our classic Diff-in-Diff case!*)

Two main approaches:

1. Build a separate synthetic control for each treated unit and average the estimated effects.
2. Pool treated units and estimate a single synthetic comparison group.

Challenges:

- ▶ More treated units → harder to find one donor pool that fits all.
- ▶ Noise and imbalance across many pre-treatment fits.
- ▶ SC becomes computationally heavy and conceptually brittle.

Need: A method that combines SC's weighting with the scalability of DiD.

Synthetic Difference-in-Differences (SDID)

Arkhangelsky, Athey, Hirshberg, Imbens & Wager (AER, 2021)
develop a hybrid method that combines:

- ▶ **Synthetic Control:** Unit weights to match pre-trends
- ▶ **Difference-in-Differences:** Time FE, unit FE, large-sample inference

Idea:

- ▶ Estimate unit weights ω_i so controls mimic treated units' pre-trends
- ▶ Estimate time weights λ_t to align pre/post periods
- ▶ Run a weighted TWFE regression:

$$\hat{\tau}_{SDID} = \arg \min_{\tau} \sum_{i,t} \omega_i \lambda_t (Y_{it} - \alpha_i - \beta_t - \tau W_{it})^2.$$

Result: A robust estimator usable for multiple treated units

Synthetic DiD: Key Ingredients

Goal: Improve DiD when **parallel trends are doubtful** by using data-driven pre-treatment matching, in the spirit of synthetic control.

Two sets of weights:

- ▶ **Unit weights** ω_i : Make the weighted average of control units mimic the **treated units' pre-treatment path**.

$$\sum_{i \in C} \omega_i Y_{i,t} \approx \frac{1}{N_T} \sum_{i \in T} Y_{i,t} \quad \text{for all pre-treatment } t$$

- ▶ **Time weights** λ_t : Make the weighted average of pre-treatment periods match the **post-treatment level/trend**.

$$\sum_{t < T_0} \lambda_t Y_{\cdot,t} \approx \sum_{t \geq T_0} \lambda_t Y_{\cdot,t}$$

Idea: Use SC-style weights to balance pre-trends, then estimate the treatment effect using a weighted TWFE regression for efficiency.

How SDID Chooses the Weights

SDID chooses weights by matching pre-treatment outcomes, but it also adds a small **ridge penalty** so the weights do not become extreme.

1. Unit weights: Make controls look like treated units (pre-period)

$$\omega = \arg \min_{\omega_i \geq 0, \sum_i \omega_i = 1} \underbrace{\sum_{t < T_0} \left(\bar{Y}_t^T - \sum_{i \in C} \omega_i Y_{i,t} \right)^2}_{\text{match pre-treatment paths}} + \underbrace{\lambda_\omega \|\omega\|_2^2}_{\text{ridge penalty}}$$

- ▶ The first term enforces good pre-period fit
- ▶ The ridge penalty pushes weights toward being smoother (shrinks size of the weights)

How SDID Chooses the Weights

2. Time weights: Make pre-period look like post-period

$$\lambda = \arg \min_{\lambda_t \geq 0, \sum_t \lambda_t = 1} \underbrace{\sum_{i \in C} \left(\bar{Y}_i^C - \sum_t \lambda_t Y_{i,t} \right)^2}_{\text{match pre- and post-period averages}} + \underbrace{\lambda_\lambda \|\lambda\|_2^2}_{\text{ridge penalty}}$$

- ▶ SDID compares post to pre just like DiD, but not all pre-periods are equally informative
- ▶ Time weights reweight the pre-period so it better represents the post-period the treated units would have faced
- ▶ This avoids letting noisy or unrepresentative early pre-periods distort the counterfactual
- ▶ Result: a more credible “post - pre” difference and a better-aligned DiD comparison.

The SDID Estimator and Interpretation

Given unit weights ω_i and time weights λ_t , SDID estimates:

$$\hat{\tau}_{SDID} = \sum_{i,t} \omega_i \lambda_t (Y_{i,t} - \hat{\alpha}_i - \hat{\beta}_t) W_{i,t}$$

where:

- ▶ $\hat{\alpha}_i$ = unit FE estimated using weighted controls
- ▶ $\hat{\beta}_t$ = time FE estimated using weighted controls
- ▶ $W_{i,t}$ = treatment indicator

Interpretation

- ▶ Pre-treatment weighted means of treated and weighted controls are **balanced** by design.
- ▶ Post-treatment effect is then identified using a DiD-style contrast of
$$(\text{treated units}) - (\text{synthetic controls}).$$
- ▶ Combines SC's robustness to trend misspecification with DiD's statistical power.

11.7: Summary and Guidelines

Modern DiD: Big Picture

- ▶ DiD is a **research design**, not just a regression:
 - ▶ Target parameter: typically ATT for some group \times time
 - ▶ Identification: (variants of) parallel trends + no anticipation
- ▶ Even complicated settings (staggered timing, covariates, weights) can be viewed as **aggregations of 2×2 “building blocks”**
 - ▶ Each building block: one group where treatment changes vs. one where it does not
 - ▶ Identification comes from simple 2×2 parallel trends
- ▶ **Forward-engineering vs. reverse-engineering**
 - ▶ Forward: start from causal question \rightarrow parameter \rightarrow assumptions \rightarrow estimator
 - ▶ Reverse: start from TWFE and ask “when does this have a causal interpretation?”
- ▶ Baker, Callaway, Goodman-Bacon, Sant'Anna (2025): DiD practice should be organized around **clear causal targets, transparent assumptions, and heterogeneity**.

A Practical DiD Checklist (Baker et al. + this lecture)

1. Define the causal object

- ▶ Which ATT(s)? 2×2 , event-time ATTs, group-time ATTs, distributional effects?
- ▶ Unit of analysis, timing group, weights (units vs. population)?

2. State identification assumptions

- ▶ Which parallel trends? (never-treated, not-yet-treated, all-groups)
- ▶ No anticipation, SUTVA, overlap

3. Assess plausibility

- ▶ Pre-trend / event-study diagnostics (Section 11.3)
- ▶ Balance in covariates and outcomes; theory for selection into treatment

3. Choose an estimator consistent with 1–3

- ▶ Avoid plain TWFE when there is staggered timing and heterogeneity (Section 11.4)
- ▶ Use a modern estimator fitting your setting

4. Do inference and assess robustness

- ▶ Cluster appropriately; be explicit about what is “random”
- ▶ Sensitivity to alternative comparison groups, functional forms, weights, estimators

Selected Advanced Extensions (Not Covered)

Here is an overview of important topics in the DiD literature that we do not discuss in detail that might be interesting for your research:

- ▶ **Robustness to Parallel-Trends Violations**

Rambachan & Roth, 2023: *"A More Credible Approach to Parallel Trends"*

Instead of assuming exact parallel trends, this approach imposes bounds on how far post-treatment trends may deviate from pre-treatment trends.

- ▶ **Continuous Treatments in DiD**

Callaway et al. 2024: *"Difference-in-Differences with a Continuous Treatment"*

- ▶ **Doubly-Robust & Conditional Parallel Trends**

Sant'Anna & Zhao, 2018: *"Doubly Robust Difference-in-Differences Estimators"*

Handling conditioning on covariates and more flexible parallel-trends assumptions efficiently.

Where to Follow Current Developments in DiD

Modern DiD is an active research area. Excellent sources for staying up to date:

- ▶ **Mixtape Sessions (Cunningham et al.)** Comprehensive lecture series with slides, code, and applications.
github.com/Mixtape-Sessions
- ▶ **Difference-in-Differences Reading Group (YouTube)**
Presentations by leading DiD researchers (Roth, Goodman-Bacon, Callaway, Sant'Anna, etc.). YouTube: DiD Reading Group
- ▶ **Authors' GitHubs** Cutting-edge methods and replication code:
[jonathandroth](https://github.com/jonathandroth), Callaway, Sant'Anna