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10.1: Introduction and Motivation



What is Panel Data?

Definition
Panel data (also called longitudinal data) consist of
observations on multiple entities (individuals, firms, regions)
over multiple time periods.

▶ Combines features of both:
▶ Cross-sectional data: different entities, one point in time
▶ Time-series data: one entity, many time periods

▶ Typical examples:
▶ Wage histories of workers observed yearly
▶ Firm-level production and investment over time
▶ Regional unemployment rates across years
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Example: Typical Structure of Panel Data
Respondent ID Year Gender Gross Income (EUR) Net Income (EUR)

101 2016 Male 38,500 26,400
101 2017 Male 39,200 27,100
101 2018 Male 40,000 27,800
101 2019 Male 41,500 28,900
101 2020 Male — —

102 2017 Female 32,000 22,300
102 2018 Female 33,400 23,200
102 2019 Female 35,100 24,400
102 2020 Female 35,900 25,000
102 2021 Female 36,200 25,400

103 2016 Male 45,600 30,800
103 2017 Male 47,000 32,000
103 2018 Male — —
103 2019 Male — —
103 2020 Male 46,200 31,600
103 2021 Male 47,800 32,800

▶ Each row is one observation: respondent-year combination.

▶ You can have time-varying and time-fixed variables

▶ Missings depend on attrition behaviour of respondents
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Advantages and Disadvantages of Panel Data

Advantages Disadvantages

+ Control for unobserved, time-
invariant heterogeneity

− Attrition and missing observa-
tions

+ Allows to capture dynamics
and lagged effects

− Complex estimation and poten-
tial serial correlation

+More efficient estimation (more
variation, less collinearity)

− Costly and time-consuming
data collection (if based on sur-
veys)

+ Enable causal inference using
within-entity variation

−Measurement error may be am-
plified by differencing
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General Model Setup

yit = x′
itβ + ci + εit

▶ i = 1, . . . ,N individuals, t = 1, . . . ,T time periods
▶ xit: observed explanatory variables
▶ ci: unobserved, time-invariant individual effect
▶ εit: idiosyncratic error term

Key Question

Is ci correlated with xit?
▶ If no → Random Effects
▶ If yes → Fixed Effects
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10.2: Pooled Regression and Error Dependence



The Pooled OLS Model

The True Model

yit = x′itβ + ci + εit, i = 1, . . . ,N, t = 1, . . . ,T

▶ ci: unobserved, time-invariant component (individual
effect)

▶ εit: idiosyncratic error
▶ The pooled model ignores the panel structure and

estimates
yit = x′itβ + uit, uit = ci + εit

Intuition: All observations are treated as one large
cross-section.
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Assumptions for Pooled OLS
The Pooled OLS Model:

yit = x′itβ + ci + εit, uit = ci + εit.

Required Assumptions for Consistency:
POLS1: Linearity The model is linear in parameters:

yit = x′itβ + uit.

POLS2: Identifiability The regressor matrix X has full column rank (K+1),
ensuring (X′X)−1 exists.

POLS3: Strict Exogeneity
E[uit | xi1, . . . , xiT] = 0

which requires in particular that

E[ci | xit] = 0 and E[εit | xit] = 0.

This is the critical assumption: if ci is correlated with xit, pooled OLS is
inconsistent.

POLS4: Independent Sampling Across Individuals The {(xit, yit)} are
independent across i, while serial correlation within i is allowed.

POLS5: Finite Moments var(x′ituit) < ∞ for all i, t.
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Conditional Expectation of β̂POLS

Population model:

yit = x′itβ + ci + εit, E[εit|xit, ci] = 0.

The population OLS estimator is

β̂POLS = (X′X)−1X′y.

Taking expectations conditional on X:

E[β̂POLS|X] = β + (X′X)−1X′ E[c|X] + (X′X)−1X′ E[ε|X].

The last term vanishes by E[εit|xit] = 0.
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Deriving the Bias Term
Hence,

E[β̂POLS|X] = β + (X′X)−1X′ E[c|X].

In expectation over X:

E[β̂POLS] = β + E
[
(X′X)−1X′c

]
.

▶ If E[ci|xit] = 0 for all i, t, the second term is zero
⇒ β̂POLS is unbiased.

▶ If E[ci|xit] ̸= 0, this expectation induces bias.

Example: Wage Equation
Suppose

wageit = β1 educit + ci + εit,

where ci captures unobserved innate ability. If more able individuals also
obtain more education, then

E[ci | educit] > 0 ⇒ β̂POLS > β1.

Pooled OLS overstates the return to education.
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Error Dependence

Even if ci is uncorrelated with xit and pooled OLS is consistent, the
composite error uit = ci + εit still violates the usual OLS assumption
of independent errors.

Error Correlation:

cov(uit, uis) = var(ci) for t ̸= s.

▶ Errors are correlated within each individual (the cluster).

▶ Correlation within cluster = fewer “effective” observations.

Across Individuals:

cov(uit, ujs) = 0 for i ̸= j.

Implication: OLS coefficients remain unbiased if E[ci|xit] = 0, but
inference based on classical SEs is invalid.

⇒We need cluster-robust standard errors

10 / 67



Cluster-Robust Standard Errors

Can we also allow for correlation within each individual?
For N individuals observed over T periods, the composite error
covariance has a block-diagonal structure.

Here is an example error covariance matrix for T = 2:

Ω =



ε211 ε11ε12 0 · · · 0 0
ε11ε12 ε212 0 · · · 0 0

0 0 ε223 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · ε2N1 εN1εN2
0 0 0 · · · εN1εN2 ε2N2


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Cluster-Robust Variance Estimator
Idea: Treat each cluster (e.g. individual) as a “super-observation” with
correlated residuals inside.
Setup: Let there be R clusters, and let Xr, ε̂r denote the stacked
regressors and residuals for cluster r.

Estimator

V̂arCR(β̂) = (X′X)−1

( R∑
r=1

X′
r ε̂rε̂

′
r Xr

)
(X′X)−1.

▶ Bread: (X′X)−1 Filling:
∑

r X′
rε̂rε̂

′
rXr

▶ Allows for arbitrary correlation and heteroskedasticity within
each cluster r.

▶ Assumes independence across clusters.
▶ Asymptotics rely on the number of clusters R → ∞.
▶ Special case: if each cluster has one observation (Tr = 1), this

collapses to White’s heteroskedasticity-robust variance.
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Finite-Sample Adjustment for Cluster-Robust SEs

Problem: With few clusters, cluster-robust standard errors are too
small (downward-biased variance estimates)

Finite-sample correction:

V̂arCR,adj(β̂) =
R

R− 1

n− 1

n− K
(X′X)−1

( R∑
r=1

X′
rε̂rε̂

′
rXr

)
(X′X)−1.

▶ The first term R
R−1 corrects for the small number of clusters

▶ The second term n−1
n−K adjusts for degrees of freedom in β̂

▶ The correction fades as R → ∞

When R is very small (< 30)
Cluster-robust SEs remain unreliable even with this correction.
⇒ use wild cluster bootstrap for valid inference.
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Multi-Way Cluster-Robust Inference (Cameron-Gelbach-Miller, 2011)

Why multi-way clustering?
▶ Errors may be correlated along more than one dimension: regions and

years, workers and firms, schools and cohorts, etc.
▶ One-way clustering understates uncertainty when dependence is

multi-dimensional.

Key idea
▶ Let A and B denote two cluster dimensions.
▶ The CGM variance estimator combines the one-way cluster variances

and subtracts the overlap:

V̂ar(β̂)CGM = V̂A + V̂B − V̂A∩B.

▶ VA: cluster-robust variance by cluster A
▶ VB: cluster-robust variance by cluster B
▶ VA∩B: variance clustered at the intersection of A and B

Assumptions
▶ Arbitrary correlation of errors within each cluster dimension.
▶ Independence across clusters in each dimension.
▶ Requires a sufficiently large number of clusters in each dimension.
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When Do Cluster-Robust SEs Work Well?

Cluster-Robust SEs work well when:
▶ There are many independent clusters (R ≳ 30–50).
▶ Clusters are roughly similar in size and none dominates

the sample.
▶ Correlation is mainly within clusters, not across them.
▶ Treatment or variation of interest occurs at the cluster

level (e.g., a region-specific policy shock).
▶ Serial correlation or shared shocks are confined to cluster

boundaries.
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When Do Cluster-Robust SEs Do Not Work Well!

Cluster-Robust SEs are unreliable when:
▶ The number of clusters is small (few firms, regions, etc.).
▶ A few clusters contain a large fraction of all observations.
▶ Clusters themselves are correlated (e.g. spillovers or

common shocks across regions).
▶ Panel length T is very small and intra-cluster dependence is

strong.
▶ Errors follow persistent time-series processes (e.g. unit

roots).

One remedy when the number of clusters is small

Use wild cluster bootstrap inference for robust p-values and
confidence intervals.
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Sidenote: The Wild Cluster Bootstrap

What is a bootstrap?
A bootstrap estimates the sampling variation of an estimator (like β̂) by
simulating what would happen if we could repeatedly resample our data.
Since we only have one dataset, we reuse model residuals to create many
“pseudo-samples.”

Why do we need it in clustered data?
▶ When the number of clusters R is small (e.g. few firms or regions),

cluster-robust t-tests tend to be too optimistic (they reject the Null too
often)

▶ The wild cluster bootstrap preserves the correlation structure within
clusters while generating variation across clusters

Core Idea: Instead of resampling observations, we resample the pattern of
residuals using random weights at the cluster level.
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Sidenote: The Wild Cluster Bootstrap

Goal: Approximate the sampling distribution of β̂ under the same cluster
dependence as in the data.

How Wild Cluster Bootstrap works:

1. Estimate the model and keep the fitted values ŷit and residuals ε̂it

2. For each cluster r, randomly change the pattern of residuals (multiply by
a random weight that averages to zero)

3. Add these modified residuals back to ŷit to make a new pseudo-sample

4. Re-estimate the model and record the new β̂(b)

5. Repeat many times to see how β̂ varies across B simulated samples

How to do inference after bootstraping:
Compute bootstrap t-statistics or percentile intervals from {β̂∗(b)}B

b=1
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10.3: Fixed Effects Models



Motivation for Fixed Effects

yit = x′itβ + ci + εit

▶ ci: time-invariant, unobserved heterogeneity (e.g. ability, preferences,
management quality)

▶ If ci is correlated with xit, pooled OLS and random effects are biased.
▶ The fixed effects model controls for ci by exploiting only within-unit

variation.

Key assumption (strict exogeneity)

E[εit | xi1, . . . , xiT, ci] = 0

Interpretation: The idiosyncratic shock εit is uncorrelated with all regressors
across time.

Implication: No feedback from current shocks to future regressors, i.e. past
or current errors do not influence future xit.
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Least Squares Dummy Variable (LSDV)
Example with N = 3 and T = 2:

y =



y11
y12
y21
y22
y31
y32


, D =



0 0
0 0
1 0
1 0

0 1
0 1

 , α =

[
α2

α3

]

⇒ y = Xβ + Dα+ ε

▶ Include Dummies for individuals 2 and 3. Individual 1 stays the
reference.

▶ Each color corresponds to one individual.
▶ D repeats that individual’s dummy over its T periods.
▶ α holds the unit-specific intercepts
▶ β0: Unit-specific intercept for reference category
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Stacked General Representation of LSDV
Stacking all individuals and time periods:

y = Xβ + Dα+ ε, D =


1T 0 · · · 0
0 1T · · · 0
...

...
. . .

...
0 0 · · · 1T

 ,

with 1T =

1...
1


T×1

for each individual.

▶ D contains one column per individual, repeated T times.
▶ LSDV explicitly estimates β and α jointly.

Problem
With large N, estimating thousands of dummy coefficients is
computationally inefficient.
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The Within Transformation: Idea
Start again from

yit = ci + x′itβ + εit.

1. Average over all T periods for individual i:

ȳi = ci + x̄′iβ + ε̄i.

2. Subtract this mean equation from the original:

yit − ȳi = (xit − x̄i)′β + (εit − ε̄i).

Result: Within (demeaned) regression
The individual effect i drops out. Estimate β by OLS on demeaned
variables:

β̂FE = argmin
β

∑
i

∑
t

(yit − ȳi − (xit − x̄i)′β)2.
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From a Single Individual to Demeaning
Focus on one individual i observed over T periods. Consider the
simplest possible regression with only an individual-specific intercept:

yi = αi1T + εi, 1T =

1...
1


The OLS fitted values are obtained via the projection matrix

P1 = 1T(1′T1T)
−11′T = 1

T1T1′T

The corresponding residual maker is

M1 = IT − P1 = IT − 1
T1T1′T

Applying M1 to any time-varying variable xi gives

M1xi = xi − 1
T1T(1′Txi) = xi − x̄i 1T,

which subtracts the individual mean from each observation.
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Residual Maker for All Individual Dummies
In the full LSDV model:

y = Xβ + Dα+ ε,

where

D =


1T 0 · · · 0
0 1T · · · 0
...

...
. . .

...
0 0 · · · 1T

 .

The OLS residual maker that removes all dummy effects is

MD = INT − D(D′D)−1D′.

Since each dummy column in D has T ones and they never overlap:

D′D = T IN.

Hence,
MD = INT − 1

TDD
′.

This matrix removes the fitted means of each individual from all
variables.
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How MD Demeans Within Each Individual
Let us write y and X as stacked blocks:

y =


y1
y2
...
yN

 , yi =

yi1
...
yiT

 .

Because of the structure of DD′, the matrix MD acts separately on each
individual’s T observations:

MD =


M0 0 · · · 0
0 M0 · · · 0
...

...
. . .

...
0 0 · · · M0

 , M0 = IT − 1
T1T1′

T.

Applying MD gives:

MDy =


M0y1
M0y2

...
M0yN

 =


y1 − ȳ11T
y2 − ȳ21T

...
yN − ȳN1T

 .

Each group is demeaned separately: Exactly the within transformation.
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Recovering the Fixed Effects from the Within Transformation

After estimating β̂FE, we can retrieve the individual effects:

α̂ = (D′D)−1D′(y− Xβ̂FE),

which simplifies to
α̂i = ȳi − x̄′i β̂FE.

▶ Each α̂i is identical to the coefficient obtained by estimating the
model directly with LSDV (person dummies).

▶ It represents an individual-specific intercept capturing all
time-invariant characteristics (e.g., ability, preferences, long-run
productivity).

▶ While often treated as nuisance parameters, in some
applications, such as AKM regressions, these fixed effects are
substantively interesting: they quantify persistent individual
heterogeneity and can be for example used for decompositions
of wage inequality.
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Assumptions for Fixed Effects (Within Estimator)
After the within (demeaning) transformation:

yit − ȳi = (xit − x̄i)
′β + (εit − ε̄i).

Required Assumptions for Consistency:
FE1: Linearity The model is linear in parameters:

yit = x′itβ + ci + εit.

FE2: Within-Variation / Identifiability The demeaned regressor matrix has
full column rank:

X̃ = MDX has rank K,
so time-invariant regressors (perfectly collinear with ci) cannot be
identified.

FE3: Strict Exogeneity (Given ci)

E[εit | xi1, . . . , xiT, ci] = 0 ∀t.
Past, current, and future regressors are uncorrelated with εit. Correlation
between ci and xit is allowed.

FE4: Independent Sampling Across Individuals The {(xit, yit, ci)} are
independent across i; arbitrary serial correlation and heteroskedasticity
within i are allowed.

FE5: Finite Moments var
(
(xit − x̄i)

′(εit − ε̄i)
)
< ∞ for all i, t.
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Asymptotics in Fixed Effects Models

▶ The FE estimator is OLS with many individual dummies, so the
usual OLS results on unbiasedness still apply under strict
exogeneity:

E[εit|xi1, . . . , xiT, ci] = 0

▶ However, because errors are typically cluster-correlated within
each individual, classical OLS efficiency and “BLUE” properties
do not hold
▶ FE remains unbiased and consistent
▶ Efficient inference requires cluster-robust standard errors

▶ For asymptotics, we let the overall sample size NT → ∞
▶ Usually: N → ∞ with fixed T: Realistic for micro panels
▶ Averaging over many individuals yields consistent

estimates of β

▶ But: each individual intercept αi is based on only T observations
⇒ incidental parameters problem
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The Incidental Parameters Problem in Nonlinear Models

▶ In nonlinear models (e.g. logit, probit), fixed effects enter the
likelihood non-additively:

Pr(yit = 1|xit, αi) = F(αi + x′itβ)

▶ Each αi must be estimated jointly with β from only T
observations

▶ As N → ∞ with fixed T:
▶ The number of nuisance parameters αi grows with N
▶ This error propagates into β̂, producing a bias of order 1/T

▶ Result: β̂FE is biased and inconsistent for fixed T

Implications

▶ Linear FE: consistent despite incidental parameters

▶ Nonlinear FE (logit, probit): inconsistent unless T → ∞
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First-Differencing as an Alternative to Demeaning

Model:
yit = x′itβ + ci + εit

First-Difference Transformation
Subtract the previous period’s observation:

∆yit = yit − yi,t−1 = (xit − xi,t−1)
′β + (εit − εi,t−1)

⇒ ci drops out since it is time-invariant.

Estimator:

β̂FD = arg min
β

∑
i

T∑
t=2

(∆yit −∆x′itβ)
2
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Relation Between First Differences and Demeaning

▶ Both Demeaning and FD remove unobserved heterogeneity ci.

▶ They differ in the transformation used:
▶ Demeaning (Within): subtracts the time mean ȳi.
▶ First-Differencing: subtracts the previous period yi,t−1.

▶ When T = 2, the two estimators are identical.

▶ For T > 2, they generally differ because Demeaning uses all time
periods, while FD only uses (T− 1) differences.
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When Do First-Difference and FE Estimates Differ?

If errors are serially uncorrelated:

εit ∼ i.i.d. ⇒ β̂FE is more efficient.

If errors are persistent (e.g. AR(1)):

εit = ρεi,t−1 + uit,

then differencing helps remove part of the serial correlation in εit.

Rule of thumb:

▶ FE preferred for i.i.d. errors and longer panels.

▶ FD preferred for short panels or dynamic models.
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Error Structure and Practical Issues with FD

Error Process After Differencing
Even if εit is i.i.d.,

∆εit = εit − εi,t−1 ⇒ cov(∆εit,∆εi,t−1) = − var(εit)

⇒ FD errors are MA(1).

Consequences:

▶ OLS on ∆yit is still consistent, but not efficient.

▶ Standard errors must allow for MA(1) correlation.

▶ Differencing magnifies measurement error.

⇒ In practice, FE (demeaning) is usually preferred unless T is very
small.

33 / 67



Two-Way Fixed Effects (Unit and Time Effects)

yit = x′itβ + ci + λt + εit

▶ ci: unit-specific effect, λt: time-specific effect (common shocks).

Double Demeaning (Equivalent to LSDV)

ỹit = yit − ȳi − ȳt + ȳ, x̃it = xit − x̄i − x̄t + x̄

OLS of ỹit on x̃it yields β̂TWFE.

▶ Standard in Difference-in-Differences and event-study
applications.

▶ Interpret β̂TWFE as the average within-unit over-time effect.

34 / 67



Attrition in Panel Data

Attrition = units drop out of the panel over time
▶ Panels become unbalanced
▶ Often unavoidable in survey and administrative data
▶ Distinguish:

▶ Random attrition: unrelated to (xit, εit)
▶ Non-random attrition: related to outcomes or regressors

Why Attrition Matters:
▶ Non-random attrition can violate FE assumptions!
▶ FE requires strict exogeneity:

E[εit | xi1, . . . , xiT, ci] = 0

If dropout depends on past shocks εi,t−1, this fails.
▶ Results: biased coefficients, misleading dynamics
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Typical Patterns of Non-Random Attrition

Typical Patterns of Non-Random Attrition:
▶ Low-income households more likely to exit survey
▶ Bad health → higher dropout in health panels
▶ Firms exit survey panels when close to bankruptcy

Practical Approaches to deal with non-random attrition:
▶ Inverse probability weighting (IPW)

▶ Estimate dropout probability p̂it
▶ Reweight: wit = 1/p̂it

▶ Sensitivity checks Compare results on:
▶ balanced vs. unbalanced panel
▶ early-dropout vs. long-stayers
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10.4: Random Effects Models and the Hausman
Test



Random Effects: Intuition

Motivation
The Fixed Effects (FE) model removes ci completely. But what if ci is
not correlated with xit?

▶ Then we lose efficiency by eliminating between-unit variation.
▶ We can treat ci as a random draw from a population:

ci ∼ i.i.d.(0, σ2
c )

▶ In that case, yit contains two random noise components:

yit = x′itβ + ci︸︷︷︸
shared across t

+ εit︸︷︷︸
idiosyncratic

▶ The Random Effects (RE) model exploits both:
▶ Within variation: over time for a given i
▶ Between variation: across different i
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Random Effects Model in Detail
Model:

yit = x′itβ + ci + εit

▶ ci is a random effect: ci ∼ i.i.d.(0, σ2
c )

▶ εit ∼ i.i.d.(0, σ2
ε)

▶ Independent across i, uncorrelated with xit
Error structure:

Ωi = E[uiu′i ] = σ2
ε IT + σ2

c1T1′T
⇒ serial correlation within i: cov(uit, uis) = σ2

c for t ̸= s

Estimation
Because errors are correlated, OLS is inefficient. We can use
Generalized Least Squares (GLS):

β̂RE = (X′Ω−1X)−1X′Ω−1y.

In practice: Feasible GLS (FGLS) estimates σ2
c and σ2

ε first.
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Assumptions for Random Effects
The Random Effects Model:

yit = x′itβ + ci + εit, uit = ci + εit,

with random intercept ci treated as part of the composite error.

Required Assumptions for Consistency:
RE1: Linearity The model is linear in parameters.
RE2: Identifiability The regressor matrix has full column rank. Time-invariant

regressors can be estimated under RE.
RE3: Strict Exogeneity

E[εit | xi1, . . . , xiT, ci] = 0 ∀t.

RE4: Orthogonality of Random Effects

E[ci | xi1, . . . , xiT] = 0.

Key condition: if ci and xit are correlated, RE is inconsistent.
RE5: Independent Sampling Across Individuals Observations are

independent across i; within-unit correlation arises through ci.
RE6: Finite Moments var(uit | xit) < ∞, and var(ci) < ∞.
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Quasi-Demeaning: Intuition
▶ FE removes all between variation (demeans fully).
▶ RE wants a compromise: only partial demeaning.

yit − θȳi = (xit − θx̄i)
′β + (εit − θε̄i)

where θ ∈ [0, 1] controls how much within variation is used.

Interpretation of θ

θ = 1−

√
σ2
ε

Tσ2
c + σ2

ε

▶ θ = 1: full demeaning ⇒ Fixed Effects
▶ θ = 0: no demeaning ⇒ Pooled OLS
▶ 0 < θ < 1: partial demeaning ⇒ Random Effects

The transformation gives:
ỹit = x̃′itβ + ε̃it,

which can be estimated by OLS.
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Quasi-Demeaning: Technical Details
Start from:

yit = x′itβ + ci + εit.

Transform both sides:

ỹit = yit − θȳi, x̃it = xit − θx̄i.

The constant component ci partially cancels:

ỹit = x̃′itβ + (1− θ)ci + (εit − θε̄i).

Variance of transformed error:

var(ũit) = σ2
ε(1− θ)2 + σ2

c (1− θ)2.

Feasible GLS (FGLS) Estimator
Estimate σ2

c and σ2
ε from residuals, compute θ, transform variables,

and estimate by OLS:
β̂RE = (X̃′X̃)−1X̃′ỹ.
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Hausman Test: Intuition

Goal
Decide whether the RE assumption E[ci|xit] = 0 is valid.

▶ If true: both FE and RE are consistent, but RE is more
efficient.

▶ If false: RE is inconsistent, only FE is consistent.

Idea: Compare β̂FE and β̂RE — if they differ substantially, ci must
be correlated with xit.

H = (β̂FE − β̂RE)
′[Var(β̂FE)− Var(β̂RE)]

−1(β̂FE − β̂RE)

▶ H ∼ χ2
K

▶ If H is large ⇒ reject H0: use FE.
▶ If H is small ⇒ fail to reject: use RE.
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Hausman Test: Implementation and Interpretation
Null Hypothesis:

H0 : E[ci|xit] = 0 ⇒ RE consistent & efficient.

Alternative:

H1 : E[ci|xit] ̸= 0 ⇒ RE inconsistent, prefer FE.

Steps:

1. Estimate β̂FE and β̂RE.

2. Compute variance matrices V̂ar(β̂FE) and V̂ar(β̂RE).

3. Evaluate test statistic H as above.

4. Compare to χ2
K critical value.

Intuition:

▶ If ci correlates with xit, FE and RE estimates diverge.

▶ The difference between them is evidence against RE.
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Limitations of the Classical Hausman Test

Context
The Hausman test is widely taught, but in practice, it often performs poorly,
especially with modern robust inference methods.

▶ The test statistic

H = (β̂FE − β̂RE)
′[V̂ar(β̂FE)− V̂ar(β̂RE)]

−1(β̂FE − β̂RE)

assumes:
▶ consistent and positive definite covariance difference
▶ homoskedastic, independent errors
▶ correct model specification in both FE and RE

▶ In small or unbalanced panels:
▶ V̂ar(β̂FE)− V̂ar(β̂RE) may not be invertible
▶ Test becomes numerically unstable or yields negative

p-values
▶ With clustered or heteroskedastic errors:

▶ The classical χ2 reference distribution is invalid
▶ Cluster-robust SEs make H undefined
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Why Pure Random Effects Are Rarely Used Today

In theory:
RE is efficient and elegant under E[ci|xit] = 0.

▶ In practice, this assumption is rarely credible:
▶ Individual heterogeneity (ci) almost always correlates with

regressors.
▶ Especially in labor, firm, and regional data, where

unobserved traits drive both xit and yit.
▶ The “efficiency gain” is small compared to potential bias.
▶ Modern applied work prioritizes robust identification over

efficiency:
▶ Fixed Effects (FE) dominates for causal inference

Bottom Line
In empirical work: Start with FE, use RE only if the identifying
assumptions are clearly defensible.
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10.5: Mundlak’s Approach



Equivalent to Fixed Effects: Mundlak’s Approach

yit = x′itβ + ci + εit

▶ Problem: E[ci|Xi] ̸= 0 and we cannot (or do not want to) use FE.

▶ Example: Non-linear models (logit, probit) suffer from incidental
parameter bias.

▶ Idea: Capture the correlated part of ci with a control function.

Assumed Relationship

E[ci|Xi] = x̄′iγ + z′iδ

x̄i contains group means of all time-varying regressors, and zi are
time-invariant regressors.
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Mundlak’s Approach: The Augmented Model

Substituting E[ci|Xi] into the structural equation gives

yit = x′itβ + x̄′iγ + z′iδ + εit + (ci − E[ci|Xi]).

▶ Estimate by Random Effects GLS: The residual (ci − E[ci|Xi]) is
now uncorrelated with xit.

▶ β has the same interpretation as in FE.

▶ γ captures correlation between ci and the regressors.
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Equivalence to Fixed Effects

▶ Even if E[ci|Xi] = x̄′iγ does not hold exactly, Mundlak’s estimator
yields

β̂Mundlak = β̂FE.

▶ Proven via partitioned regression algebra.

▶ Only interpretation of γ changes: Slopes β are identical.

▶ Hence, FE can be seen as a special case of RE with x̄i included.

Key Takeaway
Mundlak’s approach bridges FE and RE: it makes RE robust to
correlation between ci and xit.
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Interpreting the Coefficients

▶ γ measures how much of the individual effect ci is explained by
long-term differences in the regressors.

▶ If γ = 0 ⇒ ci uncorrelated with xit ⇒ RE valid.

▶ Time-invariant regressors (zi) can enter and be estimated, unlike
in FE.

▶ Two complementary interpretations:
▶ Correlational: γ reflects the association between

unobserved traits and the average regressor levels.
▶ Between-effects: γ captures how individuals with

persistently higher x̄i differ in their average yi:
A “long-run” or “between-individual” effect.
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Mundlak’s Approach and the Hausman Test

▶ Hausman test compares FE vs. RE under H0 : E[ci|Xi] = 0.

▶ Mundlak’s specification nests RE as a special case:

H0 : γ = 0.

▶ If H0 rejected → RE inconsistent → prefer FE (or Mundlak model
itself).

▶ Advantage: same test, no covariance matrix inversion, works
with robust SEs.

Interpretation
Mundlak’s model provides a regression-based alternative to the
Hausman test.
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10.6: Repeated Cross-Sections and
Pseudo-Panels



From Panel to Repeated Cross-Sections

Definition
A repeated cross-section contains observations from different
individuals or firms in each time period.

▶ Unlike a true panel, we do not follow the same entities over time.

▶ Typical in large household surveys such as:
EU-SILC, CPS, Mikrozensus

▶ We can still analyze aggregate or average changes over time.

Structure:

yit = x′itβt + εit, i = 1, . . . , nt, t = 1, . . . ,T.

Each t has a new sample.
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Estimating Changes Over Time

Model with Time Dummies

yit = x′itβ +

T∑
t=2

δtDt + εit

▶ The δt’s measure average differences across years, controlling
for xit.

▶ Estimate by pooled OLS on the stacked repeated cross-sections.
▶ Allows testing for structural change:

H0 : β1 = β2 = · · · = βT

versus year-specific coefficients.

Example
Compare average log wages across survey years after controlling for
education, age, and region.
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Pseudo-Panel Approach (Deaton, 1985)

Idea
Construct a “synthetic” panel by grouping repeated cross-sections
into cohorts that are stable over time (e.g. birth years, education
levels, gender).

▶ Define cohorts g = 1, . . . ,G (e.g. people born 1970–74).

▶ For each year t, compute cohort means:

ȳgt =
1

ngt

∑
i∈g,t

yit, x̄gt =
1

ngt

∑
i∈g,t

xit.

▶ Treat (ȳgt, x̄gt) as panel observations for cohort g.

▶ Estimate:
ȳgt = x̄′gtβ + cg + εgt.

Interpretation: The cohort means behave as if we had followed a
representative individual from each cohort through time.
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Pseudo-Panels: Assumptions and Properties

▶ Cohorts must be large and time-invariant: membership should
not change substantially over time.

▶ The individual errors εit average out within cohort:

E[εgt] ≈ 0 for large ngt.

▶ Sampling noise introduces measurement error in ȳgt and x̄gt.

▶ As ngt → ∞, this measurement error vanishes.

Econometric Implication
With sufficiently large cohorts, standard FE or RE methods can be
applied to cohort-level data to estimate within-cohort dynamics.
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Trade-Offs of the Pseudo-Panel Approach

Advantages Limitations
+ Allows analysis of long-run dy-
namics when true panels unavail-
able

− Loss of micro-level variation
(since aggregation to cohort
means)

+ Reduces bias from composi-
tion changes across years

− Cohort definitions must be sta-
ble and sufficiently large

+ Enables fixed effects at cohort
level

− Measurement error from finite-
sample cohort means

+ Particularly useful for long sur-
vey series (e.g. CPS, EU-SILC, LFS)

− Limited ability to track individ-
ual transitions
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10.7: Diagnostics and Robust Inference



Serial Correlation in Panel Models

Why It Matters
If εit is serially correlated, even cluster-robust SEs may underestimate
true sampling variation.

▶ Typical in micro panels (wages, firm productivity, health
outcomes)

▶ Violates classical OLS/GLS assumption of independent errors

▶ Leads to over-rejection of H0

Wooldridge (2002) test for serial correlation in FE models:

1. Estimate the FE model and save residuals ε̂it.

2. Regress ε̂it on ε̂i,t−1.

3. Test H0 : ρ = 0 (no serial correlation).
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Cross-Sectional Dependence and Robust SEs

▶ Common shocks (macro events, policy changes) induce
correlation across i.

▶ Ignoring this inflates t-statistics even with unit clustering.

Diagnostic Tests:

▶ Breusch–Pagan LM test for cross-sectional dependence

▶ Pesaran (2004) CD test (robust for large N, small T)

Robust Alternatives:

▶ Two-way clustering (e.g. by individual and time)

▶ Wild cluster bootstrap for few clusters
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Why Cluster Standard Errors, and at Which Level?

Principle
Cluster SEs whenever residuals are correlated within identifiable
groups.

▶ Dependence often arises from
▶ repeated observations on the same unit
▶ treatment or policy applied to groups
▶ shared environment (regions, firms, schools)

▶ Clustering accounts for arbitrary correlation within those groups.

Rule of Thumb: Cluster at the level of treatment assignment or data
dependence. Finer clustering ⇒ too optimistic; coarser clustering ⇒
conservative but valid.
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When Should You Adjust SEs for Clustering?
Abadie, Athey, Imbens, and Wooldridge (2023, QJE)

Key Message
Standard errors should reflect the level of effective treatment
variation.

▶ In experiments or DiD setups, the treatment is assigned at the
group level.

▶ Individuals within a treated group share the same shock ⇒
correlated errors.

▶ Clustering must occur at that treatment-group level.

Examples:
▶ State-level minimum wage reform ⇒ cluster by state
▶ Firm-level training program ⇒ cluster by firm
▶ School-level intervention ⇒ cluster by school

Clustering finer (by individuals) underestimates uncertainty.
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When All Else Fails → Randomization Inference

Core Idea
If asymptotic or cluster-robust inference is unreliable (e.g. few
clusters, strong dependence, or small samples), we can test
hypotheses by resampling the treatment assignment itself.

▶ Keep the outcome data fixed.

▶ Randomly permute or reassign treatment labels according to
the original experimental design.

▶ Re-estimate the effect for each permutation ⇒ get the
randomization distribution of the test statistic.

▶ Compare the actual estimate β̂obs to this distribution.
The p-value is the share of permutations where |β̂(b)| ≥ |β̂obs|.
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Caveats and Takeaways for Randomization Inference
Strengths:
▶ Provides exact finite-sample inference under the known

treatment assignment mechanism.
▶ Does not rely on large-N or large-T asymptotics.
▶ Particularly valuable when:

▶ The number of clusters is small, or
▶ Cross-sectional dependence is strong.

Limitations:
▶ Can be overly conservative, especially with few possible

reassignments.
▶ Tests validity only under the experimental assignment, not under

broader sampling variation.

Takeaway: Use randomization inference as a robust fallback when
cluster-robust SEs or bootstrap methods are unreliable. It validates
inference by returning to the core question: Would we see this effect
if treatment were randomly reassigned?
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10.8: Comparison and Empirical Guidelines



The “Within vs. Between” Confusion

Two Sources of Variation

▶ Within variation: Changes in xit for the same individual over time.

▶ Between variation: Differences in x̄i across individuals.

▶ Fixed Effects (FE) uses only within variation
⇒ identifies how changes within a unit affect y.

▶ Random Effects (RE) and Pooled OLS mix within and between
variation.

▶ Misinterpreting FE estimates as cross-sectional effects
⇒ classic “within/between confusion.”

Example
FE: Does a firm’s productivity rise when it invests more than its own
average?
Between: Are firms that invest more on average more productive?
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Decomposing Variation: Within vs Between R2

Total variation in yit can be decomposed as:

yit = ȳ+ (ȳi − ȳ) + (yit − ȳi)

⇒ Var(yit) = Var(ȳi)︸ ︷︷ ︸
between variation

+Ei[Var(yit|i)]︸ ︷︷ ︸
within variation

.

Three R2 Measures

▶ Within R2: Fit of the demeaned (FE) regression.
Uses only yit − ȳi and xit − x̄i.

▶ Between R2: Fit across ȳi and x̄i.

▶ Overall R2: Fit of pooled OLS ignoring ci.

High within-R2 ⇒ model explains time variation within units.
High between-R2 ⇒ model explains cross-unit level differences.
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Pooled OLS: Mixing Within and Between Variation
Pooled OLS estimates

yit = x′itβ + uit, uit = ci + εit.

Decompose each regressor and outcome into mean and deviation:

xit = x̄i + (xit − x̄i), yit = ȳi + (yit − ȳi).

Substituting gives:

yit = x̄′iβ + (xit − x̄i)′β + ci + εit.

Implication
Pooled OLS combines:

βPOLS = wW βwithin + wB βbetween,

where weights wW,wB depend on Var(xit − x̄i) and Var(x̄i).

⇒ If ci correlated with x̄i, the between component biases βPOLS.
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Random Effects: A Weighted Combination
Random Effects quasi-demeans the data:

yit − θȳi = (xit − θx̄i)′β + (εit − θε̄i),

where

θ = 1−

√
σ2
ε

Tσ2
c + σ2

ε

.

Interpretation

▶ θ = 1⇒ full demeaning → FE estimator

▶ θ = 0⇒ no demeaning → Pooled OLS

▶ 0 < θ < 1⇒ partial demeaning → RE estimator

β̂RE = wW β̂within + (1− wW) β̂between,

where wW increases with θ.
Hence: RE blends within and between information, approaching FE as
intra-cluster correlation grows.
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Choosing the Right Model: Practical Guidelines

Model Type When to Use

Pooled OLS Quick benchmark; only valid if ci uncorrelated
with regressors and no serial dependence.

Fixed Effects (FE) Default for causal inference with unobserved,
time-invariant heterogeneity. Removes all
between-unit variation.

First Differences (FD) Short panels (T = 2-3), or dynamic settings
with serially correlated errors.

Random Effects (RE) Appropriate only if E[ci|xit] = 0 is credible;
more efficient but rarely defensible empirically.

Mundlak Model Hybrid: retains RE efficiency while controlling
for correlation between ci and regressors.

Pseudo-Panels / Re-
peated Cross-Sections

When true panels unavailable; use large, stable
cohorts to recover within-group dynamics.

Always: Cluster standard errors at the appropriate level, test for serial and
cross-sectional dependence, and prefer identification over efficiency.
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Conclusion and Outlook: Toward Modern Diff-in-Diff
▶ Panel estimators (FE, FD) form the foundation for modern causal

inference with treatment variation over time.
▶ Classical two-way FE DiD models:

yit = αi + λt + τDit + εit

estimate an average treatment effect under parallel trends.
▶ Recent literature challenges this simple setup:

▶ Treatment timing heterogeneity ⇒ TWFE bias
▶ Event-study estimators and group-time average treatment

effects
▶ New DiD estimators: Callaway-Sant’Anna (2021),

Sun-Abraham (2021), de Chaisemartin-D’Haultfoeuille
(2020)

Next Lecture
Lecture 11: The New Difference-in-Differences Literature
Dynamic treatment effects, staggered adoption, and identification beyond
parallel trends.
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