

Advanced Econometrics

Lecture 10: Models for Panel Data

Eduard Brüll
Fall 2025

Advanced Econometrics

10. Models for Panel Data

- 10.1 Introduction and Motivation
- 10.2 Pooled Regression and Error Dependence
- 10.3 Fixed Effects Models
- 10.4 Random Effects Models and the Hausman Test
- 10.5 Mundlak's Approach
- 10.6 Repeated Cross-Sections and Pseudo-Panels
- 10.7 Diagnostics and Robust Inference
- 10.8 Comparison and Empirical Guidelines

Literature: Wooldridge Ch. 9–10; Baltagi (2021); Deaton (1985)

10.1: Introduction and Motivation

What is Panel Data?

Definition

Panel data (also called **longitudinal data**) consist of **observations on multiple entities (individuals, firms, regions)** over **multiple time periods**.

- ▶ Combines features of both:
 - ▶ **Cross-sectional data:** different entities, one point in time
 - ▶ **Time-series data:** one entity, many time periods
- ▶ Typical examples:
 - ▶ Wage histories of workers observed yearly
 - ▶ Firm-level production and investment over time
 - ▶ Regional unemployment rates across years

Example: Typical Structure of Panel Data

Respondent ID	Year	Gender	Gross Income (EUR)	Net Income (EUR)
101	2016	Male	38,500	26,400
101	2017	Male	39,200	27,100
101	2018	Male	40,000	27,800
101	2019	Male	41,500	28,900
101	2020	Male	—	—
102	2017	Female	32,000	22,300
102	2018	Female	33,400	23,200
102	2019	Female	35,100	24,400
102	2020	Female	35,900	25,000
102	2021	Female	36,200	25,400
103	2016	Male	45,600	30,800
103	2017	Male	47,000	32,000
103	2018	Male	—	—
103	2019	Male	—	—
103	2020	Male	46,200	31,600
103	2021	Male	47,800	32,800

- ▶ Each row is one **observation**: respondent-year combination.
- ▶ You can have time-varying and time-fixed variables
- ▶ Missings depend on attrition behaviour of respondents

Advantages and Disadvantages of Panel Data

Advantages	Disadvantages
<ul style="list-style-type: none">+ Control for unobserved, time-invariant heterogeneity+ Allows to capture dynamics and lagged effects+ More efficient estimation (more variation, less collinearity)+ Enable causal inference using within-entity variation	<ul style="list-style-type: none">- Attrition and missing observations- Complex estimation and potential serial correlation- Costly and time-consuming data collection (if based on surveys)- Measurement error may be amplified by differencing

$$y_{it} = \mathbf{x}'_{it} \boldsymbol{\beta} + c_i + \varepsilon_{it}$$

- ▶ $i = 1, \dots, N$ individuals, $t = 1, \dots, T$ time periods
- ▶ \mathbf{x}_{it} : observed explanatory variables
- ▶ c_i : unobserved, time-invariant individual effect
- ▶ ε_{it} : idiosyncratic error term

Key Question

Is c_i **correlated** with \mathbf{x}_{it} ?

- ▶ If **no** → Random Effects
- ▶ If **yes** → Fixed Effects

10.2: Pooled Regression and Error Dependence

The Pooled OLS Model

The True Model

$$y_{it} = \mathbf{x}'_{it}\beta + c_i + \varepsilon_{it}, \quad i = 1, \dots, N, \quad t = 1, \dots, T$$

- ▶ c_i : unobserved, time-invariant component (individual effect)
- ▶ ε_{it} : idiosyncratic error
- ▶ The **pooled model** ignores the panel structure and estimates

$$y_{it} = \mathbf{x}'_{it}\beta + u_{it}, \quad u_{it} = c_i + \varepsilon_{it}$$

Intuition: All observations are treated as one large cross-section.

Assumptions for Pooled OLS

The Pooled OLS Model:

$$y_{it} = \mathbf{x}'_{it}\beta + c_i + \varepsilon_{it}, \quad u_{it} = c_i + \varepsilon_{it}.$$

Required Assumptions for Consistency:

POLS1: Linearity The model is linear in parameters:

$$y_{it} = \mathbf{x}'_{it}\beta + u_{it}.$$

POLS2: Identifiability The regressor matrix \mathbf{X} has full column rank ($K+1$), ensuring $(\mathbf{X}'\mathbf{X})^{-1}$ exists.

POLS3: Strict Exogeneity

$$\mathbb{E}[u_{it} | \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}] = 0$$

which requires in particular that

$$\mathbb{E}[c_i | \mathbf{x}_{it}] = 0 \quad \text{and} \quad \mathbb{E}[\varepsilon_{it} | \mathbf{x}_{it}] = 0.$$

This is the critical assumption: if c_i is correlated with \mathbf{x}_{it} , pooled OLS is inconsistent.

POLS4: Independent Sampling Across Individuals The $\{(\mathbf{x}_{it}, y_{it})\}$ are independent across i , while serial correlation within i is allowed.

POLS5: Finite Moments $\text{var}(\mathbf{x}'_{it}u_{it}) < \infty$ for all i, t .

Conditional Expectation of $\widehat{\beta}_{POLS}$

Population model:

$$y_{it} = \mathbf{x}'_{it}\beta + c_i + \varepsilon_{it}, \quad \mathbf{E}[\varepsilon_{it} | \mathbf{x}_{it}, c_i] = 0.$$

The population OLS estimator is

$$\widehat{\beta}_{POLS} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

Taking expectations conditional on \mathbf{X} :

$$\mathbf{E}[\widehat{\beta}_{POLS} | \mathbf{X}] = \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{E}[\mathbf{c} | \mathbf{X}] + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{E}[\varepsilon | \mathbf{X}].$$

The last term vanishes by $\mathbf{E}[\varepsilon_{it} | \mathbf{x}_{it}] = 0$.

Deriving the Bias Term

Hence,

$$E[\hat{\beta}_{POLS} | \mathbf{X}] = \beta + (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' E[\mathbf{c} | \mathbf{X}].$$

In expectation over \mathbf{X} :

$$E[\hat{\beta}_{POLS}] = \beta + E[(\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{c}].$$

- ▶ If $E[c_i | \mathbf{x}_{it}] = 0$ for all i, t , the second term is zero
 $\Rightarrow \hat{\beta}_{POLS}$ is unbiased.
- ▶ If $E[c_i | \mathbf{x}_{it}] \neq 0$, this expectation induces bias.

Example: Wage Equation

Suppose

$$\text{wage}_{it} = \beta_1 \text{educ}_{it} + c_i + \varepsilon_{it},$$

where c_i captures unobserved innate ability. If more able individuals also obtain more education, then

$$E[c_i | \text{educ}_{it}] > 0 \Rightarrow \hat{\beta}_{POLS} > \beta_1.$$

Pooled OLS overstates the return to education.

Error Dependence

Even if c_i is uncorrelated with \mathbf{x}_{it} and pooled OLS is consistent, the composite error $u_{it} = c_i + \varepsilon_{it}$ still violates the usual OLS assumption of independent errors.

Error Correlation:

$$\text{cov}(u_{it}, u_{is}) = \text{var}(c_i) \quad \text{for } t \neq s.$$

- ▶ Errors are **correlated within** each individual (the cluster).
- ▶ Correlation within cluster = fewer “effective” observations.

Across Individuals:

$$\text{cov}(u_{it}, u_{js}) = 0 \quad \text{for } i \neq j.$$

Implication: OLS coefficients remain unbiased if $\mathbf{E}[c_i | \mathbf{x}_{it}] = 0$, but inference based on classical SEs is invalid.

⇒ We need **cluster-robust standard errors**

Cluster-Robust Standard Errors

Can we also allow for correlation within each individual?

For N individuals observed over T periods, the composite error covariance has a **block-diagonal** structure.

Here is an example error covariance matrix for $T = 2$:

$$\Omega = \begin{bmatrix} \varepsilon_{11}^2 & \varepsilon_{11}\varepsilon_{12} & 0 & \cdots & 0 & 0 \\ \varepsilon_{11}\varepsilon_{12} & \varepsilon_{12}^2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \varepsilon_{23}^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \varepsilon_{N1}^2 & \varepsilon_{N1}\varepsilon_{N2} \\ 0 & 0 & 0 & \cdots & \varepsilon_{N1}\varepsilon_{N2} & \varepsilon_{N2}^2 \end{bmatrix}$$

Cluster-Robust Variance Estimator

Idea: Treat each cluster (e.g. individual) as a “super-observation” with correlated residuals inside.

Setup: Let there be R clusters, and let $X_r, \hat{\varepsilon}_r$ denote the stacked regressors and residuals for cluster r .

Estimator

$$\widehat{\text{Var}}_{\text{CR}}(\hat{\beta}) = (X'X)^{-1} \left(\sum_{r=1}^R X_r' \hat{\varepsilon}_r \hat{\varepsilon}_r' X_r \right) (X'X)^{-1}.$$

- ▶ **Bread:** $(X'X)^{-1}$ **Filling:** $\sum_r X_r' \hat{\varepsilon}_r \hat{\varepsilon}_r' X_r$
- ▶ Allows for arbitrary correlation and heteroskedasticity **within** each cluster r .
- ▶ Assumes independence **across** clusters.
- ▶ Asymptotics rely on the number of clusters $R \rightarrow \infty$.
- ▶ **Special case:** if each cluster has one observation ($T_r = 1$), this collapses to White's heteroskedasticity-robust variance.

Finite-Sample Adjustment for Cluster-Robust SEs

Problem: With few clusters, cluster-robust standard errors are **too small** (downward-biased variance estimates)

Finite-sample correction:

$$\widehat{\text{Var}}_{\text{CR,adj}}(\hat{\beta}) = \frac{R}{R-1} \frac{n-1}{n-K} (X'X)^{-1} \left(\sum_{r=1}^R X_r' \hat{\varepsilon}_r \hat{\varepsilon}_r' X_r \right) (X'X)^{-1}.$$

- ▶ The first term $\frac{R}{R-1}$ corrects for the small number of clusters
- ▶ The second term $\frac{n-1}{n-K}$ adjusts for degrees of freedom in $\hat{\beta}$
- ▶ The correction fades as $R \rightarrow \infty$

When R is very small (< 30)

Cluster-robust SEs remain unreliable even with this correction.

⇒ use **wild cluster bootstrap** for valid inference.

Why multi-way clustering?

- ▶ Errors may be correlated along more than one dimension: regions and years, workers and firms, schools and cohorts, etc.
- ▶ One-way clustering understates uncertainty when dependence is multi-dimensional.

Key idea

- ▶ Let A and B denote two cluster dimensions.
- ▶ The CGM variance estimator combines the one-way cluster variances and subtracts the overlap:

$$\widehat{\text{Var}}(\hat{\beta})_{\text{CGM}} = \widehat{V}_A + \widehat{V}_B - \widehat{V}_{A \cap B}.$$

- ▶ V_A : cluster-robust variance by cluster A
- ▶ V_B : cluster-robust variance by cluster B
- ▶ $V_{A \cap B}$: variance clustered at the intersection of A and B

Assumptions

- ▶ Arbitrary correlation of errors within each cluster dimension.
- ▶ Independence across clusters in each dimension.
- ▶ Requires a sufficiently large number of clusters in each dimension.

When Do Cluster-Robust SEs Work Well?

Cluster-Robust SEs work well when:

- ▶ There are **many independent clusters** ($R \gtrsim 30-50$).
- ▶ Clusters are **roughly similar in size** and none dominates the sample.
- ▶ Correlation is mainly **within clusters**, not across them.
- ▶ Treatment or variation of interest occurs **at the cluster level** (e.g., a region-specific policy shock).
- ▶ Serial correlation or shared shocks are confined to cluster boundaries.

When Do Cluster-Robust SEs Do Not Work Well!

Cluster-Robust SEs are unreliable when:

- ▶ The number of clusters is small (few firms, regions, etc.).
- ▶ A few clusters contain a large fraction of all observations.
- ▶ Clusters themselves are correlated (e.g. spillovers or common shocks across regions).
- ▶ Panel length T is very small and intra-cluster dependence is strong.
- ▶ Errors follow persistent time-series processes (e.g. unit roots).

One remedy when the number of clusters is small

Use **wild cluster bootstrap** inference for robust p -values and confidence intervals.

What is a bootstrap?

A **bootstrap** estimates the sampling variation of an estimator (like $\hat{\beta}$) by simulating what would happen if we could repeatedly resample our data. Since we only have one dataset, we reuse model residuals to create many "pseudo-samples."

Why do we need it in clustered data?

- ▶ When the number of clusters R is small (e.g. few firms or regions), cluster-robust t -tests tend to be **too optimistic** (they reject the Null too often)
- ▶ The wild cluster bootstrap preserves the correlation structure **within clusters** while generating variation **across clusters**

Core Idea: Instead of resampling observations, we **resample the pattern of residuals** using random weights at the cluster level.

Sidenote: The Wild Cluster Bootstrap

Goal: Approximate the sampling distribution of $\hat{\beta}$ under the same cluster dependence as in the data.

How Wild Cluster Bootstrap works:

1. Estimate the model and keep the fitted values \hat{y}_{it} and residuals $\hat{\varepsilon}_{it}$
2. For each cluster r , randomly change the **pattern of residuals** (multiply by a random weight that averages to zero)
3. Add these modified residuals back to \hat{y}_{it} to make a new pseudo-sample
4. Re-estimate the model and record the new $\hat{\beta}^{(b)}$
5. Repeat many times to see how $\hat{\beta}$ varies across B simulated samples

How to do inference after bootstrapping:

Compute bootstrap t -statistics or percentile intervals from $\{\hat{\beta}^{*(b)}\}_{b=1}^B$

10.3: Fixed Effects Models

Motivation for Fixed Effects

$$y_{it} = \mathbf{x}'_{it}\beta + c_i + \varepsilon_{it}$$

- ▶ c_i : time-invariant, unobserved heterogeneity (e.g. ability, preferences, management quality)
- ▶ If c_i is **correlated** with \mathbf{x}_{it} , pooled OLS and random effects are **biased**.
- ▶ The **fixed effects model** controls for c_i by exploiting only **within-unit variation**.

Key assumption (strict exogeneity)

$$\mathbf{E}[\varepsilon_{it} \mid \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}, c_i] = 0$$

Interpretation: The idiosyncratic shock ε_{it} is uncorrelated with all regressors across time.

Implication: No feedback from current shocks to future regressors, i.e. past or current errors do not influence future \mathbf{x}_{it} .

Least Squares Dummy Variable (LSDV)

Example with $N = 3$ and $T = 2$:

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} \\ \mathbf{y}_{12} \\ \mathbf{y}_{21} \\ \mathbf{y}_{22} \\ \mathbf{y}_{31} \\ \mathbf{y}_{32} \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad \boldsymbol{\alpha} = \begin{bmatrix} \alpha_2 \\ \alpha_3 \end{bmatrix}$$
$$\Rightarrow \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{D}\boldsymbol{\alpha} + \boldsymbol{\varepsilon}$$

- ▶ Include Dummies for individuals 2 and 3. Individual 1 stays the reference.
- ▶ Each color corresponds to one individual.
- ▶ \mathbf{D} repeats that individual's dummy over its T periods.
- ▶ $\boldsymbol{\alpha}$ holds the unit-specific intercepts
- ▶ β_0 : Unit-specific intercept for reference category

Stacked General Representation of LSDV

Stacking all individuals and time periods:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{D}\boldsymbol{\alpha} + \boldsymbol{\varepsilon}, \quad \mathbf{D} = \begin{bmatrix} \mathbf{1}_T & 0 & \cdots & 0 \\ 0 & \mathbf{1}_T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{1}_T \end{bmatrix},$$

with $\mathbf{1}_T = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_{T \times 1}$ for each individual.

- ▶ \mathbf{D} contains one column per individual, repeated T times.
- ▶ LSDV explicitly estimates $\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$ jointly.

Problem

With large N , estimating thousands of dummy coefficients is computationally inefficient.

The Within Transformation: Idea

Start again from

$$y_{it} = c_i + \mathbf{x}'_{it}\beta + \varepsilon_{it}.$$

1. Average over all T periods for individual i :

$$\bar{y}_i = c_i + \bar{\mathbf{x}}'_i\beta + \bar{\varepsilon}_i.$$

2. Subtract this mean equation from the original:

$$y_{it} - \bar{y}_i = (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)' \beta + (\varepsilon_{it} - \bar{\varepsilon}_i).$$

Result: Within (demeaned) regression

The individual effect i **drops out**. Estimate β by OLS on demeaned variables:

$$\hat{\beta}_{FE} = \underset{\beta}{\operatorname{argmin}} \sum_i \sum_t (y_{it} - \bar{y}_i - (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)' \beta)^2.$$

From a Single Individual to Demeaning

Focus on one individual i observed over T periods. Consider the simplest possible regression with only an individual-specific intercept:

$$\mathbf{y}_i = \alpha_i \mathbf{1}_T + \varepsilon_i, \quad \mathbf{1}_T = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

The OLS fitted values are obtained via the **projection matrix**

$$\mathbf{P}_1 = \mathbf{1}_T (\mathbf{1}_T' \mathbf{1}_T)^{-1} \mathbf{1}_T' = \frac{1}{T} \mathbf{1}_T \mathbf{1}_T'$$

The corresponding **residual maker** is

$$\mathbf{M}_1 = \mathbf{I}_T - \mathbf{P}_1 = \mathbf{I}_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T'$$

Applying \mathbf{M}_1 to any time-varying variable \mathbf{x}_i gives

$$\mathbf{M}_1 \mathbf{x}_i = \mathbf{x}_i - \frac{1}{T} \mathbf{1}_T (\mathbf{1}_T' \mathbf{x}_i) \mathbf{1}_T = \mathbf{x}_i - \bar{x}_i \mathbf{1}_T,$$

which subtracts the individual mean from each observation.

Residual Maker for All Individual Dummies

In the full LSDV model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{D}\boldsymbol{\alpha} + \boldsymbol{\varepsilon},$$

where

$$\mathbf{D} = \begin{bmatrix} \mathbf{1}_T & 0 & \cdots & 0 \\ 0 & \mathbf{1}_T & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{1}_T \end{bmatrix}.$$

The OLS residual maker that removes all dummy effects is

$$\mathbf{M}_D = \mathbf{I}_{NT} - \mathbf{D}(\mathbf{D}'\mathbf{D})^{-1}\mathbf{D}'.$$

Since each dummy column in \mathbf{D} has T ones and they never overlap:

$$\mathbf{D}'\mathbf{D} = T\mathbf{I}_N.$$

Hence,

$$\mathbf{M}_D = \mathbf{I}_{NT} - \frac{1}{T}\mathbf{D}\mathbf{D}'.$$

This matrix removes the fitted means of each individual from all variables.

How \mathbf{M}_D Demeans Within Each Individual

Let us write \mathbf{y} and \mathbf{X} as stacked blocks:

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_N \end{bmatrix}, \quad \mathbf{y}_i = \begin{bmatrix} y_{i1} \\ \vdots \\ y_{iT} \end{bmatrix}.$$

Because of the structure of \mathbf{DD}' , the matrix \mathbf{M}_D acts separately on each individual's T observations:

$$\mathbf{M}_D = \begin{bmatrix} \mathbf{M}^0 & 0 & \cdots & 0 \\ 0 & \mathbf{M}^0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{M}^0 \end{bmatrix}, \quad \mathbf{M}^0 = \mathbf{I}_T - \frac{1}{T} \mathbf{1}_T \mathbf{1}_T'.$$

Applying \mathbf{M}_D gives:

$$\mathbf{M}_D \mathbf{y} = \begin{bmatrix} \mathbf{M}^0 \mathbf{y}_1 \\ \mathbf{M}^0 \mathbf{y}_2 \\ \vdots \\ \mathbf{M}^0 \mathbf{y}_N \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 - \bar{y}_1 \mathbf{1}_T \\ \mathbf{y}_2 - \bar{y}_2 \mathbf{1}_T \\ \vdots \\ \mathbf{y}_N - \bar{y}_N \mathbf{1}_T \end{bmatrix}.$$

Each group is demeaned separately: Exactly the within transformation.

After estimating $\hat{\beta}_{FE}$, we can retrieve the individual effects:

$$\hat{\alpha} = (\mathbf{D}'\mathbf{D})^{-1}\mathbf{D}'(\mathbf{y} - \mathbf{X}\hat{\beta}_{FE}),$$

which simplifies to

$$\hat{\alpha}_i = \bar{y}_i - \bar{\mathbf{x}}_i'\hat{\beta}_{FE}.$$

- ▶ Each $\hat{\alpha}_i$ is identical to the coefficient obtained by estimating the model directly with LSDV (person dummies).
- ▶ It represents an **individual-specific intercept** capturing all **time-invariant characteristics** (e.g., ability, preferences, long-run productivity).
- ▶ While often treated as nuisance parameters, in some applications, such as **AKM regressions**, these fixed effects are **substantively interesting**: they quantify persistent individual heterogeneity and can be for example used for decompositions of wage inequality.

Assumptions for Fixed Effects (Within Estimator)

After the within (demeaning) transformation:

$$y_{it} - \bar{y}_i = (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)' \boldsymbol{\beta} + (\varepsilon_{it} - \bar{\varepsilon}_i).$$

Required Assumptions for Consistency:

FE1: Linearity The model is linear in parameters:

$$y_{it} = \mathbf{x}'_{it} \boldsymbol{\beta} + c_i + \varepsilon_{it}.$$

FE2: Within-Variation / Identifiability The demeaned regressor matrix has full column rank:

$$\tilde{\mathbf{X}} = \mathbf{M}_D \mathbf{X} \text{ has rank } K,$$

so time-invariant regressors (perfectly collinear with c_i) cannot be identified.

FE3: Strict Exogeneity (Given c_i)

$$\mathbb{E}[\varepsilon_{it} | \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}, c_i] = 0 \quad \forall t.$$

Past, current, and future regressors are uncorrelated with ε_{it} . Correlation between c_i and \mathbf{x}_{it} is allowed.

FE4: Independent Sampling Across Individuals The $\{(\mathbf{x}_{it}, y_{it}, c_i)\}$ are independent across i ; arbitrary serial correlation and heteroskedasticity within i are allowed.

FE5: Finite Moments $\text{var}((\mathbf{x}_{it} - \bar{\mathbf{x}}_i)'(\varepsilon_{it} - \bar{\varepsilon}_i)) < \infty$ for all i, t .

Asymptotics in Fixed Effects Models

- ▶ The FE estimator is OLS with many individual dummies, so the usual OLS results on **unbiasedness** still apply under strict exogeneity:

$$E[\varepsilon_{it} | \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}, c_i] = 0$$

- ▶ However, because errors are typically **cluster-correlated** within each individual, classical OLS efficiency and “BLUE” properties **do not** hold
 - ▶ FE remains unbiased and consistent
 - ▶ Efficient inference requires **cluster-robust standard errors**
- ▶ For asymptotics, we let the overall sample size $NT \rightarrow \infty$
 - ▶ Usually: $N \rightarrow \infty$ with fixed T : Realistic for micro panels
 - ▶ Averaging over many individuals yields consistent estimates of β
- ▶ **But:** each individual intercept α_i is based on only T observations
⇒ **incidental parameters problem**

- ▶ In nonlinear models (e.g. logit, probit), fixed effects enter the likelihood **non-additively**:

$$\Pr(y_{it} = 1 | \mathbf{x}_{it}, \alpha_i) = F(\alpha_i + \mathbf{x}'_{it} \boldsymbol{\beta})$$

- ▶ Each α_i must be estimated jointly with $\boldsymbol{\beta}$ from only T observations
- ▶ As $N \rightarrow \infty$ with fixed T :
 - ▶ The number of nuisance parameters α_i grows with N
 - ▶ This error propagates into $\hat{\boldsymbol{\beta}}$, producing a **bias of order** $1/T$
- ▶ Result: $\hat{\boldsymbol{\beta}}_{FE}$ is **biased and inconsistent** for fixed T

Implications

- ▶ Linear FE: consistent despite incidental parameters
- ▶ Nonlinear FE (logit, probit): inconsistent unless $T \rightarrow \infty$

First-Differencing as an Alternative to Demeaning

Model:

$$y_{it} = \mathbf{x}'_{it}\beta + c_i + \varepsilon_{it}$$

First-Difference Transformation

Subtract the previous period's observation:

$$\Delta y_{it} = y_{it} - y_{i,t-1} = (\mathbf{x}_{it} - \mathbf{x}_{i,t-1})'\beta + (\varepsilon_{it} - \varepsilon_{i,t-1})$$

⇒ c_i drops out since it is time-invariant.

Estimator:

$$\widehat{\beta}_{FD} = \arg \min_{\beta} \sum_i \sum_{t=2}^T (\Delta y_{it} - \Delta \mathbf{x}'_{it}\beta)^2$$

Relation Between First Differences and Demeaning

- ▶ Both Demeaning and FD remove unobserved heterogeneity c_i .
- ▶ They differ in the transformation used:
 - ▶ **Demeaning (Within)**: subtracts the time mean \bar{y}_i .
 - ▶ **First-Differencing**: subtracts the previous period $y_{i,t-1}$.
- ▶ When $T = 2$, the two estimators are **identical**.
- ▶ For $T > 2$, they generally differ because Demeaning uses all time periods, while FD only uses $(T - 1)$ differences.

When Do First-Difference and FE Estimates Differ?

If errors are serially uncorrelated:

$\varepsilon_{it} \sim \text{i.i.d.} \Rightarrow \hat{\beta}_{\text{FE}}$ is more efficient.

If errors are persistent (e.g. AR(1)):

$$\varepsilon_{it} = \rho \varepsilon_{i,t-1} + u_{it},$$

then differencing helps remove part of the serial correlation in ε_{it} .

Rule of thumb:

- ▶ **FE** preferred for i.i.d. errors and longer panels.
- ▶ **FD** preferred for short panels or dynamic models.

Error Process After Differencing

Even if ε_{it} is i.i.d.,

$$\Delta\varepsilon_{it} = \varepsilon_{it} - \varepsilon_{i,t-1} \Rightarrow \text{cov}(\Delta\varepsilon_{it}, \Delta\varepsilon_{i,t-1}) = -\text{var}(\varepsilon_{it})$$

\Rightarrow FD errors are **MA(1)**.

Consequences:

- ▶ OLS on Δy_{it} is still consistent, but not efficient.
- ▶ Standard errors must allow for MA(1) correlation.
- ▶ Differencing magnifies measurement error.

\Rightarrow In practice, FE (demeaning) is usually preferred unless T is very small.

Two-Way Fixed Effects (Unit and Time Effects)

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + c_i + \lambda_t + \varepsilon_{it}$$

- ▶ c_i : unit-specific effect, λ_t : time-specific effect (common shocks).

Double Demeaning (Equivalent to LSDV)

$$\tilde{y}_{it} = y_{it} - \bar{y}_i - \bar{y}_t + \bar{y}, \quad \tilde{\mathbf{x}}_{it} = \mathbf{x}_{it} - \bar{\mathbf{x}}_i - \bar{\mathbf{x}}_t + \bar{\mathbf{x}}$$

OLS of \tilde{y}_{it} on $\tilde{\mathbf{x}}_{it}$ yields $\hat{\beta}_{\text{TWFE}}$.

- ▶ Standard in Difference-in-Differences and event-study applications.
- ▶ Interpret $\hat{\beta}_{\text{TWFE}}$ as the **average within-unit over-time effect**.

Attrition in Panel Data

Attrition = units drop out of the panel over time

- ▶ Panels become **unbalanced**
- ▶ Often unavoidable in survey and administrative data
- ▶ Distinguish:
 - ▶ **Random attrition**: unrelated to $(x_{it}, \varepsilon_{it})$
 - ▶ **Non-random attrition**: related to outcomes or regressors

Why Attrition Matters:

- ▶ Non-random attrition can violate FE assumptions!
- ▶ FE requires strict exogeneity:

$$\mathbf{E}[\varepsilon_{it} \mid x_{i1}, \dots, x_{iT}, c_i] = 0$$

If dropout depends on past shocks $\varepsilon_{i,t-1}$, this fails.

- ▶ **Results**: biased coefficients, misleading dynamics

Typical Patterns of Non-Random Attrition

Typical Patterns of Non-Random Attrition:

- ▶ Low-income households more likely to exit survey
- ▶ Bad health → higher dropout in health panels
- ▶ Firms exit survey panels when close to bankruptcy

Practical Approaches to deal with non-random attrition:

- ▶ **Inverse probability weighting (IPW)**
 - ▶ Estimate dropout probability \hat{p}_{it}
 - ▶ Reweight: $w_{it} = 1/\hat{p}_{it}$
- ▶ **Sensitivity checks** Compare results on:
 - ▶ balanced vs. unbalanced panel
 - ▶ early-dropout vs. long-stayers

10.4: Random Effects Models and the Hausman Test

Motivation

The **Fixed Effects (FE)** model removes c_i completely. But what if c_i is not correlated with x_{it} ?

- ▶ Then we **lose efficiency** by eliminating between-unit variation.
- ▶ We can treat c_i as a random draw from a population:

$$c_i \sim \text{i.i.d.}(0, \sigma_c^2)$$

- ▶ In that case, y_{it} contains two random noise components:

$$y_{it} = \mathbf{x}'_{it}\beta + \underbrace{c_i}_{\text{shared across } t} + \underbrace{\varepsilon_{it}}_{\text{idiosyncratic}}$$

- ▶ The Random Effects (RE) model exploits both:
 - ▶ **Within variation:** over time for a given i
 - ▶ **Between variation:** across different i

Random Effects Model in Detail

Model:

$$y_{it} = \mathbf{x}'_{it}\beta + c_i + \varepsilon_{it}$$

- ▶ c_i is a random effect: $c_i \sim \text{i.i.d.}(0, \sigma_c^2)$
- ▶ $\varepsilon_{it} \sim \text{i.i.d.}(0, \sigma_\varepsilon^2)$
- ▶ Independent across i , uncorrelated with \mathbf{x}_{it}

Error structure:

$$\Omega_i = \mathbf{E}[\mathbf{u}_i \mathbf{u}'_i] = \sigma_\varepsilon^2 \mathbf{I}_T + \sigma_c^2 \mathbf{1}_T \mathbf{1}'_T$$

⇒ serial correlation within i : $\text{cov}(u_{it}, u_{is}) = \sigma_c^2$ for $t \neq s$

Estimation

Because errors are correlated, OLS is inefficient. We can use **Generalized Least Squares (GLS)**:

$$\hat{\beta}_{RE} = (\mathbf{X}' \Omega^{-1} \mathbf{X})^{-1} \mathbf{X}' \Omega^{-1} \mathbf{y}.$$

In practice: **Feasible GLS (FGLS)** estimates σ_c^2 and σ_ε^2 first.

Assumptions for Random Effects

The Random Effects Model:

$$y_{it} = \mathbf{x}'_{it}\beta + c_i + \varepsilon_{it}, \quad u_{it} = c_i + \varepsilon_{it},$$

with random intercept c_i treated as part of the composite error.

Required Assumptions for Consistency:

RE1: Linearity The model is linear in parameters.

RE2: Identifiability The regressor matrix has full column rank. Time-invariant regressors can be estimated under RE.

RE3: Strict Exogeneity

$$\mathbf{E}[\varepsilon_{it} \mid \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}, c_i] = 0 \quad \forall t.$$

RE4: Orthogonality of Random Effects

$$\mathbf{E}[c_i \mid \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}] = 0.$$

Key condition: if c_i and \mathbf{x}_{it} are correlated, RE is inconsistent.

RE5: Independent Sampling Across Individuals Observations are independent across i ; within-unit correlation arises through c_i .

RE6: Finite Moments $\text{var}(u_{it} \mid \mathbf{x}_{it}) < \infty$, and $\text{var}(c_i) < \infty$.

Quasi-Demeaning: Intuition

- ▶ FE removes all between variation (demeans fully).
- ▶ RE wants a compromise: only **partial demeaning**.

$$y_{it} - \theta \bar{y}_i = (\mathbf{x}_{it} - \theta \bar{\mathbf{x}}_i)' \boldsymbol{\beta} + (\varepsilon_{it} - \theta \bar{\varepsilon}_i)$$

where $\theta \in [0, 1]$ controls how much within variation is used.

Interpretation of θ

$$\theta = 1 - \sqrt{\frac{\sigma_\varepsilon^2}{T\sigma_c^2 + \sigma_\varepsilon^2}}$$

- ▶ $\theta = 1$: full demeaning \Rightarrow Fixed Effects
- ▶ $\theta = 0$: no demeaning \Rightarrow Pooled OLS
- ▶ $0 < \theta < 1$: partial demeaning \Rightarrow Random Effects

The transformation gives:

$$\tilde{y}_{it} = \tilde{\mathbf{x}}_{it}' \boldsymbol{\beta} + \tilde{\varepsilon}_{it},$$

which can be estimated by OLS.

Quasi-Demeaning: Technical Details

Start from:

$$y_{it} = \mathbf{x}'_{it}\beta + c_i + \varepsilon_{it}.$$

Transform both sides:

$$\tilde{y}_{it} = y_{it} - \theta \bar{y}_i, \quad \tilde{\mathbf{x}}_{it} = \mathbf{x}_{it} - \theta \bar{\mathbf{x}}_i.$$

The constant component c_i partially cancels:

$$\tilde{y}_{it} = \tilde{\mathbf{x}}'_{it}\beta + (1 - \theta)c_i + (\varepsilon_{it} - \theta \bar{\varepsilon}_i).$$

Variance of transformed error:

$$\text{var}(\tilde{u}_{it}) = \sigma_\varepsilon^2(1 - \theta)^2 + \sigma_c^2(1 - \theta)^2.$$

Feasible GLS (FGLS) Estimator

Estimate σ_c^2 and σ_ε^2 from residuals, compute θ , transform variables, and estimate by OLS:

$$\hat{\beta}_{RE} = (\tilde{\mathbf{X}}'\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}'\tilde{\mathbf{y}}.$$

Goal

Decide whether the RE assumption $E[c_i | \mathbf{x}_{it}] = 0$ is valid.

- ▶ **If true:** both FE and RE are consistent, but RE is more efficient.
- ▶ **If false:** RE is inconsistent, only FE is consistent.

Idea: Compare $\hat{\beta}_{FE}$ and $\hat{\beta}_{RE}$ – if they differ substantially, c_i must be correlated with \mathbf{x}_{it} .

$$H = (\hat{\beta}_{FE} - \hat{\beta}_{RE})' [\text{Var}(\hat{\beta}_{FE}) - \text{Var}(\hat{\beta}_{RE})]^{-1} (\hat{\beta}_{FE} - \hat{\beta}_{RE})$$

- ▶ $H \sim \chi_K^2$
- ▶ If H is large \Rightarrow reject H_0 : use FE.
- ▶ If H is small \Rightarrow fail to reject: use RE.

Hausman Test: Implementation and Interpretation

Null Hypothesis:

$$H_0 : \mathbf{E}[c_i | \mathbf{x}_{it}] = 0 \Rightarrow \text{RE consistent \& efficient.}$$

Alternative:

$$H_1 : \mathbf{E}[c_i | \mathbf{x}_{it}] \neq 0 \Rightarrow \text{RE inconsistent, prefer FE.}$$

Steps:

1. Estimate $\hat{\beta}_{FE}$ and $\hat{\beta}_{RE}$.
2. Compute variance matrices $\widehat{\text{Var}}(\hat{\beta}_{FE})$ and $\widehat{\text{Var}}(\hat{\beta}_{RE})$.
3. Evaluate test statistic H as above.
4. Compare to χ_K^2 critical value.

Intuition:

- ▶ If c_i correlates with \mathbf{x}_{it} , FE and RE estimates diverge.
- ▶ The difference between them is evidence against RE.

Limitations of the Classical Hausman Test

Context

The Hausman test is widely taught, but in practice, it often performs poorly, especially with modern robust inference methods.

- ▶ The test statistic

$$H = (\hat{\beta}_{FE} - \hat{\beta}_{RE})' [\widehat{\text{Var}}(\hat{\beta}_{FE}) - \widehat{\text{Var}}(\hat{\beta}_{RE})]^{-1} (\hat{\beta}_{FE} - \hat{\beta}_{RE})$$

assumes:

- ▶ consistent and positive definite covariance difference
- ▶ homoskedastic, independent errors
- ▶ correct model specification in both FE and RE
- ▶ In small or unbalanced panels:
 - ▶ $\widehat{\text{Var}}(\hat{\beta}_{FE}) - \widehat{\text{Var}}(\hat{\beta}_{RE})$ may not be invertible
 - ▶ Test becomes numerically unstable or yields negative *p*-values
- ▶ With clustered or heteroskedastic errors:
 - ▶ The classical χ^2 reference distribution is invalid
 - ▶ Cluster-robust SEs make *H* undefined

Why Pure Random Effects Are Rarely Used Today

In theory:

RE is efficient and elegant under $E[c_i | \mathbf{x}_{it}] = 0$.

- ▶ In practice, this assumption is rarely credible:
 - ▶ Individual heterogeneity (c_i) almost always correlates with regressors.
 - ▶ Especially in labor, firm, and regional data, where unobserved traits drive both \mathbf{x}_{it} and y_{it} .
- ▶ The “efficiency gain” is small compared to potential bias.
- ▶ Modern applied work prioritizes **robust identification** over efficiency:
 - ▶ **Fixed Effects (FE)** dominates for causal inference

Bottom Line

In empirical work: **Start with FE**, use RE only if the identifying assumptions are clearly defensible.

10.5: Mundlak's Approach

Equivalent to Fixed Effects: Mundlak's Approach

$$y_{it} = \mathbf{x}'_{it}\beta + c_i + \varepsilon_{it}$$

- ▶ Problem: $E[c_i | \mathbf{X}_i] \neq 0$ and we cannot (or do not want to) use FE.
- ▶ **Example:** Non-linear models (logit, probit) suffer from incidental parameter bias.
- ▶ **Idea:** Capture the correlated part of c_i with a control function.

Assumed Relationship

$$E[c_i | \mathbf{X}_i] = \bar{\mathbf{x}}'_i \gamma + \mathbf{z}'_i \delta$$

$\bar{\mathbf{x}}_i$ contains group means of all time-varying regressors, and \mathbf{z}_i are time-invariant regressors.

Mundlak's Approach: The Augmented Model

Substituting $\mathbf{E}[c_i|\mathbf{X}_i]$ into the structural equation gives

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + \bar{\mathbf{x}}'_i\boldsymbol{\gamma} + \mathbf{z}'_i\boldsymbol{\delta} + \varepsilon_{it} + (c_i - \mathbf{E}[c_i|\mathbf{X}_i]).$$

- ▶ Estimate by Random Effects GLS: The residual $(c_i - \mathbf{E}[c_i|\mathbf{X}_i])$ is now uncorrelated with \mathbf{x}_{it} .
- ▶ $\boldsymbol{\beta}$ has the same interpretation as in FE.
- ▶ $\boldsymbol{\gamma}$ captures correlation between c_i and the regressors.

- ▶ Even if $E[c_i | \mathbf{X}_i] = \bar{\mathbf{x}}_i' \gamma$ does not hold exactly, Mundlak's estimator yields

$$\hat{\beta}_{\text{Mundlak}} = \hat{\beta}_{FE}.$$

- ▶ Proven via partitioned regression algebra.
- ▶ Only interpretation of γ changes: Slopes β are identical.
- ▶ Hence, FE can be seen as a special case of RE with $\bar{\mathbf{x}}_i$ included.

Key Takeaway

Mundlak's approach bridges FE and RE: it makes RE robust to correlation between c_i and \mathbf{x}_{it} .

Interpreting the Coefficients

- ▶ γ measures how much of the individual effect c_i is explained by long-term differences in the regressors.
- ▶ If $\gamma = 0 \Rightarrow c_i$ uncorrelated with $\mathbf{x}_{it} \Rightarrow$ RE valid.
- ▶ Time-invariant regressors (\mathbf{z}_i) can enter and be estimated, unlike in FE.
- ▶ Two complementary interpretations:
 - ▶ **Correlational:** γ reflects the association between unobserved traits and the average regressor levels.
 - ▶ **Between-effects:** γ captures how individuals with persistently higher \bar{x}_i differ in their average y_i : A “long-run” or “between-individual” effect.

Mundlak's Approach and the Hausman Test

- ▶ Hausman test compares FE vs. RE under $H_0 : \mathbf{E}[c_i | \mathbf{X}_i] = 0$.
- ▶ Mundlak's specification nests RE as a special case:

$$H_0 : \gamma = 0.$$

- ▶ If H_0 rejected \rightarrow RE inconsistent \rightarrow prefer FE (or Mundlak model itself).
- ▶ Advantage: same test, no covariance matrix inversion, works with robust SEs.

Interpretation

Mundlak's model provides a regression-based alternative to the Hausman test.

10.6: Repeated Cross-Sections and Pseudo-Panels

Definition

A **repeated cross-section** contains observations from different individuals or firms in each time period.

- ▶ Unlike a true panel, we do **not follow the same entities** over time.
- ▶ Typical in large household surveys such as:
EU-SILC, CPS, Mikrozensus
- ▶ We can still analyze **aggregate or average changes over time**.

Structure:

$$y_{it} = \mathbf{x}'_{it} \boldsymbol{\beta}_t + \varepsilon_{it}, \quad i = 1, \dots, n_t, \quad t = 1, \dots, T.$$

Each t has a new sample.

Estimating Changes Over Time

Model with Time Dummies

$$y_{it} = \mathbf{x}'_{it}\beta + \sum_{t=2}^T \delta_t D_t + \varepsilon_{it}$$

- ▶ The δ_t 's measure **average differences across years**, controlling for \mathbf{x}_{it} .
- ▶ Estimate by pooled OLS on the stacked repeated cross-sections.
- ▶ Allows testing for structural change:

$$H_0 : \beta_1 = \beta_2 = \cdots = \beta_T$$

versus year-specific coefficients.

Example

Compare average log wages across survey years after controlling for education, age, and region.

Pseudo-Panel Approach (Deaton, 1985)

Idea

Construct a “synthetic” panel by grouping repeated cross-sections into **cohorts** that are stable over time (e.g. birth years, education levels, gender).

- ▶ Define cohorts $g = 1, \dots, G$ (e.g. people born 1970–74).
- ▶ For each year t , compute **cohort means**:

$$\bar{y}_{gt} = \frac{1}{n_{gt}} \sum_{i \in g, t} y_{it}, \quad \bar{\mathbf{x}}_{gt} = \frac{1}{n_{gt}} \sum_{i \in g, t} \mathbf{x}_{it}.$$

- ▶ Treat $(\bar{y}_{gt}, \bar{\mathbf{x}}_{gt})$ as panel observations for cohort g .
- ▶ Estimate:

$$\bar{y}_{gt} = \bar{\mathbf{x}}'_{gt} \boldsymbol{\beta} + c_g + \varepsilon_{gt}.$$

Interpretation: The cohort means behave as if we had followed a representative individual from each cohort through time.

Pseudo-Panels: Assumptions and Properties

- ▶ Cohorts must be **large and time-invariant**: membership should not change substantially over time.
- ▶ The individual errors ε_{it} average out within cohort:

$$E[\varepsilon_{gt}] \approx 0 \quad \text{for large } n_{gt}.$$

- ▶ Sampling noise introduces **measurement error** in \bar{y}_{gt} and \bar{x}_{gt} .
- ▶ As $n_{gt} \rightarrow \infty$, this measurement error vanishes.

Econometric Implication

With sufficiently large cohorts, standard FE or RE methods can be applied to cohort-level data to estimate within-cohort dynamics.

Trade-Offs of the Pseudo-Panel Approach

Advantages	Limitations
<ul style="list-style-type: none">+ Allows analysis of long-run dynamics when true panels unavailable+ Reduces bias from composition changes across years+ Enables fixed effects at cohort level+ Particularly useful for long survey series (e.g. CPS, EU-SILC, LFS)	<ul style="list-style-type: none">– Loss of micro-level variation (since aggregation to cohort means)– Cohort definitions must be stable and sufficiently large– Measurement error from finite-sample cohort means– Limited ability to track individual transitions

10.7: Diagnostics and Robust Inference

Why It Matters

If ε_{it} is serially correlated, even cluster-robust SEs may underestimate true sampling variation.

- ▶ Typical in micro panels (wages, firm productivity, health outcomes)
- ▶ Violates classical OLS/GLS assumption of independent errors
- ▶ Leads to over-rejection of H_0

Wooldridge (2002) test for serial correlation in FE models:

1. Estimate the FE model and save residuals $\hat{\varepsilon}_{it}$.
2. Regress $\hat{\varepsilon}_{it}$ on $\hat{\varepsilon}_{i,t-1}$.
3. Test $H_0: \rho = 0$ (no serial correlation).

- ▶ Common shocks (macro events, policy changes) induce correlation across i .
- ▶ Ignoring this inflates t -statistics even with unit clustering.

Diagnostic Tests:

- ▶ Breusch–Pagan LM test for cross-sectional dependence
- ▶ Pesaran (2004) CD test (robust for large N , small T)

Robust Alternatives:

- ▶ Two-way clustering (e.g. by individual and time)
- ▶ Wild cluster bootstrap for few clusters

Why Cluster Standard Errors, and at Which Level?

Principle

Cluster SEs whenever residuals are correlated within identifiable groups.

- ▶ Dependence often arises from
 - ▶ repeated observations on the same unit
 - ▶ treatment or policy applied to groups
 - ▶ shared environment (regions, firms, schools)
- ▶ Clustering accounts for arbitrary correlation within those groups.

Rule of Thumb: Cluster at the level of **treatment assignment or data dependence**. Finer clustering \Rightarrow too optimistic; coarser clustering \Rightarrow conservative but valid.

When Should You Adjust SEs for Clustering?

Abadie, Athey, Imbens, and Wooldridge (2023, QJE)

Key Message

Standard errors should reflect the level of effective treatment variation.

- ▶ In experiments or DiD setups, the treatment is assigned at the group level.
- ▶ Individuals within a treated group share the same shock ⇒ correlated errors.
- ▶ Clustering must occur at that **treatment-group level**.

Examples:

- ▶ State-level minimum wage reform ⇒ cluster by state
- ▶ Firm-level training program ⇒ cluster by firm
- ▶ School-level intervention ⇒ cluster by school

Clustering finer (by individuals) underestimates uncertainty.

Core Idea

If asymptotic or cluster-robust inference is unreliable (e.g. few clusters, strong dependence, or small samples), we can test hypotheses by **resampling the treatment assignment itself**.

- ▶ Keep the outcome data fixed.
- ▶ Randomly **permute or reassign treatment labels** according to the original experimental design.
- ▶ Re-estimate the effect for each permutation \Rightarrow get the **randomization distribution** of the test statistic.
- ▶ Compare the actual estimate $\hat{\beta}_{\text{obs}}$ to this distribution. The p -value is the share of permutations where $|\hat{\beta}^{(b)}| \geq |\hat{\beta}_{\text{obs}}|$.

Caveats and Takeaways for Randomization Inference

Strengths:

- ▶ Provides **exact finite-sample inference** under the known treatment assignment mechanism.
- ▶ Does not rely on large- N or large- T asymptotics.
- ▶ Particularly valuable when:
 - ▶ The number of clusters is small, or
 - ▶ Cross-sectional dependence is strong.

Limitations:

- ▶ Can be **overly conservative**, especially with few possible reassessments.
- ▶ Tests validity only under the experimental assignment, not under broader sampling variation.

Takeaway: Use randomization inference as a **robust fallback** when cluster-robust SEs or bootstrap methods are unreliable. It validates inference by returning to the core question: Would we see this effect if treatment were randomly reassigned?

10.8: Comparison and Empirical Guidelines

The “Within vs. Between” Confusion

Two Sources of Variation

- ▶ **Within variation:** Changes in x_{it} for the same individual over time.
- ▶ **Between variation:** Differences in \bar{x}_i across individuals.

- ▶ Fixed Effects (FE) uses only within variation
⇒ identifies how changes within a unit affect y .
- ▶ Random Effects (RE) and Pooled OLS mix within and between variation.
- ▶ Misinterpreting FE estimates as cross-sectional effects
⇒ classic “within/between confusion.”

Example

FE: Does a firm's productivity rise when it invests more than its own average?

Between: Are firms that invest more on average more productive?

Decomposing Variation: Within vs Between R^2

Total variation in y_{it} can be decomposed as:

$$y_{it} = \bar{y} + (\bar{y}_i - \bar{y}) + (y_{it} - \bar{y}_i)$$
$$\Rightarrow \text{Var}(y_{it}) = \underbrace{\text{Var}(\bar{y}_i)}_{\text{between variation}} + \underbrace{\mathbf{E}_i[\text{Var}(y_{it}|\bar{i})]}_{\text{within variation}}.$$

Three R^2 Measures

- ▶ **Within R^2 :** Fit of the demeaned (FE) regression.
Uses only $y_{it} - \bar{y}_i$ and $x_{it} - \bar{x}_i$.
- ▶ **Between R^2 :** Fit across \bar{y}_i and \bar{x}_i .
- ▶ **Overall R^2 :** Fit of pooled OLS ignoring c_i .

High within- $R^2 \Rightarrow$ model explains time variation within units.

High between- $R^2 \Rightarrow$ model explains cross-unit level differences.

Pooled OLS: Mixing Within and Between Variation

Pooled OLS estimates

$$y_{it} = \mathbf{x}'_{it} \boldsymbol{\beta} + u_{it}, \quad u_{it} = c_i + \varepsilon_{it}.$$

Decompose each regressor and outcome into mean and deviation:

$$x_{it} = \bar{x}_i + (x_{it} - \bar{x}_i), \quad y_{it} = \bar{y}_i + (y_{it} - \bar{y}_i).$$

Substituting gives:

$$y_{it} = \bar{x}'_i \boldsymbol{\beta} + (x_{it} - \bar{x}_i)' \boldsymbol{\beta} + c_i + \varepsilon_{it}.$$

Implication

Pooled OLS combines:

$$\boldsymbol{\beta}_{\text{POLS}} = w_W \boldsymbol{\beta}_{\text{within}} + w_B \boldsymbol{\beta}_{\text{between}},$$

where weights w_W, w_B depend on $\text{Var}(x_{it} - \bar{x}_i)$ and $\text{Var}(\bar{x}_i)$.

⇒ If c_i correlated with \bar{x}_i , the between component biases $\boldsymbol{\beta}_{\text{POLS}}$.

Random Effects: A Weighted Combination

Random Effects quasi-demeans the data:

$$y_{it} - \theta \bar{y}_i = (\mathbf{x}_{it} - \theta \bar{\mathbf{x}}_i)' \boldsymbol{\beta} + (\varepsilon_{it} - \theta \bar{\varepsilon}_i),$$

where

$$\theta = 1 - \sqrt{\frac{\sigma_{\varepsilon}^2}{T\sigma_c^2 + \sigma_{\varepsilon}^2}}.$$

Interpretation

- $\theta = 1 \Rightarrow$ full demeaning \rightarrow FE estimator
- $\theta = 0 \Rightarrow$ no demeaning \rightarrow Pooled OLS
- $0 < \theta < 1 \Rightarrow$ partial demeaning \rightarrow RE estimator

$$\hat{\boldsymbol{\beta}}_{\text{RE}} = w_W \hat{\boldsymbol{\beta}}_{\text{within}} + (1 - w_W) \hat{\boldsymbol{\beta}}_{\text{between}},$$

where w_W increases with θ .

Hence: RE blends within and between information, approaching FE as intra-cluster correlation grows.

Choosing the Right Model: Practical Guidelines

Model Type	When to Use
Pooled OLS	Quick benchmark; only valid if c_i uncorrelated with regressors and no serial dependence.
Fixed Effects (FE)	Default for causal inference with unobserved, time-invariant heterogeneity. Removes all between-unit variation.
First Differences (FD)	Short panels ($T = 2-3$), or dynamic settings with serially correlated errors.
Random Effects (RE)	Appropriate only if $E[c_i \mathbf{x}_{it}] = 0$ is credible; more efficient but rarely defensible empirically.
Mundlak Model	Hybrid: retains RE efficiency while controlling for correlation between c_i and regressors.
Pseudo-Panels / Repeated Cross-Sections	When true panels unavailable; use large, stable cohorts to recover within-group dynamics.

Always: Cluster standard errors at the appropriate level, test for serial and cross-sectional dependence, and prefer identification over efficiency.

Conclusion and Outlook: Toward Modern Diff-in-Diff

- ▶ Panel estimators (FE, FD) form the foundation for modern causal inference with treatment variation over time.
- ▶ Classical two-way FE DiD models:

$$y_{it} = \alpha_i + \lambda_t + \tau D_{it} + \varepsilon_{it}$$

estimate an average treatment effect under **parallel trends**.

- ▶ Recent literature challenges this simple setup:
 - ▶ Treatment timing heterogeneity \Rightarrow **TWFE bias**
 - ▶ Event-study estimators and group-time average treatment effects
 - ▶ **New DiD estimators:** Callaway-Sant'Anna (2021), Sun-Abraham (2021), de Chaisemartin-D'Haultfoeuille (2020)

Next Lecture

Lecture 11: The New Difference-in-Differences Literature

Dynamic treatment effects, staggered adoption, and identification beyond parallel trends.