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9.1: The Generalized Regression Model




Recap: Ordinary Least Squares

Linear model:
y=XB+¢e,  E[|X]=0, Var(c|X)=?l
Key properties:

» Unbiased and consistent under exogeneity.

» Efficiency proof relied on equal and uncorrelated error variance
(Assumption A4).

» BLUE (Best Linear Unbiased Estimator) if errors are spherical:

Var(u|X) = oI,

» Used when Var(u;|X) = o2 /w; (known or estimable).
» WLSis a special case of GLS with diagonal Q = W1
Takeaway: So far, we assumed uncorrelated errors. Next, we

generalize to correlated errors and introduce the GLS estimator.
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From Robust SEs to Efficient Estimation

We have seen that when errors are not spherical:
Var(e|X) = o?Q, Q# Iy,
OLS remains unbiased and consistent, but no longer efficient.
The sandwich estimator corrects inference:
Var(Bovs) = (X'X) X' QX(X'X) L,
but leaves the point estimate unchanged.

Question: Can we improve not only inference, but also the estimator
itself when Q has known structure?

= This leads to the Generalized Least Squares (GLS) estimator.
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What is Q1/22

We will transform our data with the matrix Q~'/2 for GLS
Notation:

QY2 isthe matrix such that Q~Y/2Q(Q~1/2) =1,.
It is the matrix square root of the inverse of :

(9—1/2)/(9—1/2) -0 1

Intuition:

» |t rescales and rotates the data so that transformed errors
become uncorrelated.

> In practice, we rarely compute it directly:

» For a diagonal Q: divide by each o¢; (That's WLS if we use it to
deal with non-homoskedastic variance).
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The Generalized Regression Model

Consider:
y=X5+e¢, E[e|X] =0, Var(e|X) = oI,

where Q is positive definite but not necessarily identity.
Pre-multiplying by Q—'/2 yields transformed variables:

y=0 2y X=X, u=Q Y%,
for which Var(a|X) = o2I,.
Applying OLS to these transformed data gives:

Bors = (X'Q7IX)~IX'Q Yy

GLS transforms the errors to be uncorrelated with the same spread
across observations
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When Does GLS Help?

Case 1: Heteroskedasticity

o2 0 ... 0
0 o2 0

Q= . = w=1/c?
0 0 o2

= Weighted Least Squares (WLS)

Case 2: Autocorrelation

—
R ED
- S,

= Time-ordered dependence of errors

GLS handles both — but requires knowledge (or estimation) of (2.
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OLS vs GLS in a Nutshell

OoLS: A .
Bors = (X'X)"'X'y,  Var(Bos|X) = a*(X'X)~*

GLS:

Bers = (X'Q7X)TIX'Q7y,  Var(Beus|X) = o*(X'Q ' X) !

» GLS is BLUE under non-spherical errors.
» OLS is a special case when Q = /.
» In practice: 2 unknown = use Feasible GLS (FGLS).

Alternative: Robust (sandwich) SEs maintain validity without
changing g.
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Why Feasible GLS Is Less Popular Than Huber—Eicker—White

Feasible GLS (FGLS):
Bros = (X'QIX) I X'Q 7ty
requires estimating the full covariance structure .

Practical issues:

> Estimating Q reliably is hard; especially in small samples or with
complex dependence.

> Model misspecification of {2 can make FGLS less efficient than OLS.

Why robust SEs became dominant:

» Huber-Eicker-White (“sandwich”) inference works under very general
forms of heteroskedasticity and autocorrelation.

» No need to specify or estimate Q.

» Easy to compute and valid in large samples even if the true structure is
unknown.

Bottom line:

FGLS is efficient only if the covariance model is correct; robust SEs are safer
and simpler in applied work.
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From Correlated Errors to Serial Correlation

GLS reminded us: when 2 has off-diagonal elements, errors are
correlated across observations.

In most time-series data:

1 p p?
p 1 p
Q=12 p 1 = Cov(ut,Ui_p) = plo?

p

Interpretation:

> Correlated errors often arise from time persistence in omitted
variables.

» We will later see a model where: u; = pu;_1 + ¢ due to
persistence = Then, even if ¢; is white noise, the composite error
u; will be serially correlated.

Next: We'll illustrate this with the ice-cream consumption example.
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Example: Omitted Variables and Serial Correlation

The ice cream example:
» Suppose we regress daily ice cream consumption y; on price p:
Yt = Bo + Bipt + Ut
» True data-generating process includes temperature T
Yi = Bo + Bipt + BTt + e,
but we omit T:.

What happens?
» The omitted factor T; varies smoothly over time: Hot days follow hot
days.
» = The composite error term
Ut = BTt + et
is serially correlated, even if ¢; itself is white noise.

Intuition:
» OVB in time series can manifest as autocorrelation of residuals.

» The problem isn't just inefficiency: Autocorrelation hints at missing
dynamics or omitted variables.
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lllustration: The Ice-Cream Example

Fitted vs. Observed (NO Temperature Control)
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Strong autocorrelation from omitted temperature

> True driver: temperature T; changes gradually over time.

» |If T; omitted, the residual inherits its correlations structure over time.
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lllustration: The Ice-Cream Example

Fitted vs. Observed (WITH Temperature Control)

Quantity (yt)
Residuals

v T
75 100

o
N
a
o
=}

v
0 25 50 75 100

Much less autocorrelation with temperature control

> True driver: temperature T; changes gradually over time.
» |If T; omitted, the residual inherits its correlations structure over time.
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From GLS to Time-Series Models

Why discuss GLS now?
» In cross-section data, Q2 captures heteroskedasticity.
> In time-series data, (2 captures serial correlation between errors.

Example: AR(1) error process

Ut = pUt—1 + &t, |p| < 1.

Implications:
» OLS remains unbiased (if exogenous) but is no longer efficient.

> GLS (or feasible GLS) can restore efficiency by accounting for
correlation.

> Serial correlation often signals dynamic structure in the data:

y: may depend on y;_1, not just X:.

Next step:

We move from correcting correlated errors (GLS) to explicitly modeling
dynamics in y; through AR and dynamic regression models.
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Why Time-Series Feels Different

Applied micro, finance, and macro all study causality, but their data
worlds differ

Cross-section / panel world:
» Units are independent or conditionally independent.
» Variation comes from who or where.

> We seek causal identification: treatment effects, policy impacts.

Time-series world:

» Observations are dependent through time: today’s data predict
tomorrow.

» Variation comes from when.
> We seek dynamic structure and forecasting ability.

Consequence: Even when we use the same estimators (OLS, ML,
GMM), the questions and diagnostics are different.

14/78



A Different Kind of Identification

In applied micro, identification means isolating a causal effect. In
time-series, it often means isolating a dynamic mechanism.

Applied micro:
» “What would have happened without the policy?”

» Exogeneity through design or instruments.

Time-series:
» “How does a one-time shock propagate over time?”

» Identification through model structure (lags, filters, restrictions).

Takeaway: Time-series econometrics is less about finding
quasi-experiments and more about describing and testing the laws of
motion that generate the data.

15/78



Time-Series Thinking: Common in Finance, Rarer in Applied Micro

Finance and macroeconomics: Time-series methods are part of everyday
empirical work.

> Forecasting returns, volatility, and risk premia

> Market efficiency and asset-pricing tests depend on serial dependence
structures

» Typical data: high-frequency, long panels, few identification concerns
but strong modeling discipline

Applied micro and business fields: Usually rely on cross-sectional or panel
identification.

» Emphasis on exogeneity and local variation (DiD, IV, RCT).

» Time-series often treated as nuisance (trends, persistence, serial
correlation).

» Yet: dynamic responses and long-run adjustment paths are inherently
time-series questions.
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Applied Micro Example: Forecasting-Based Counterfactuals

Yagan, D. (2019). Employment Hysteresis from the Great Recession. American
Economic Review, 109(10), 3495-3529.

Research question: Did local labor markets hit hardest by the Great
Recession experience persistent employment losses even after the recovery?

Challenge: Distinguishing temporary cyclical shocks from long-term
structural effects in aggregate employment data.

Approach: Combines panel microdata on local labor markets with a
forecasting-based time-series counterfactual for employment recovery
paths.

Main Result:

Shows strong persistence (“hysteresis”): local shocks have long-lasting
employment effects.
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9.2: Dynamic Linear Models




Dynamic Linear Models

Dynamic models arise when past realizations of y; or the errors affect
current outcomes.
Vi =X +et, &= pe_1+ U
Examples of sources of dynamics:
» Partial adjustment or habit formation
» True state dependence
» Serial correlation of omitted factors

Substituting the AR(1) error structure:

Vi = pYr—1 + X8 — pX_1 8 + Ut

= Lagged dependent variables can arise from either genuine
dynamics or serial correlation.
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The First-Order Autoregression: AR(1)

A simple way to describe time dependence is to relate y; directly to its

own past:

Yi=p+pyr—1 + Uy,

where u; is a white noise shock (zero mean, uncorrelated over time).

Interpreting the parameter p:

Value of p | Behavior of the process
p=0 No persistence. Each y; is independent noise.

0 < p <1 | Positive persistence. Shocks decay gradually over time.
p1 Very high persistence.
p <0 Negative persistence.

The series alternates above and below its mean.

When p is small, y; quickly forgets past shocks. When p is near one,
shocks fade only slowly. When p is negative, the process each shock
flips the direction of the next period.
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AR-1 Impulse Response for different p

Response to a One-Time Shock in an AR(1) Process

Persistence = 0 Persistence = 0.5

> Persistence = 0.9 Persistence = -0.7

1.0

05

[T R A A A

-0.5

Each line shows how a one-time shock today affects future y; values,
depending on p. We abstract from the white-noise error u; in every period to
isolate persistence.
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Why start here?

> The AR(1) process is the simplest way to capture persistence:
how today’s outcome depends on yesterday’s.

» |t provides a clean laboratory to see how serial correlation,
stability, and long-run behavior are connected.

» Understanding AR(1) intuition helps interpret more complex
dynamic models:

» When persistence reflects genuine state dependence
» When it reflects correlated shocks or omitted dynamics

> In the next section, we'll formalize what makes such a process
stable or stationary.
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GLS and Dynamic Models: Connecting the Dots

Recall from Section 9.1:
Var(e|X) = 0%Q, Q# I,.
GLS transforms the data to remove correlation in &
y=%, X=q7'2x

In time series data,  typically has an AR(1) structure:

€t = pet—1 + Ut.

Two equivalent viewpoints:

» GLS approach: Treat serial correlation as a nuisance and
transform the data to get spherical errors

» Dynamic model approach: Treat serial correlation as evidence of
meaningful time dependence in y; itself
Both perspectives address the same issue: Persistence over time
» GLS focuses on efficiency

» Dynamic models seek economic interpretation
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9.3: Serial Correlation and Stationarity




Serial Correlation and Stability

Big question

How do we know whether a dynamic model describes a process that
settles down or one that drifts endlessly?

Example: AR(1) process
Ye=p+ pYr—1 + Ut
Two possibilities:
> |p| < 1: shocks die out = process is stable.
> |p| > 1: shocks persist or explode = process is unstable.
Why we care:

» Stability ensures the process has a fixed mean and variance.

» Otherwise, we can’t summarize its long-run behavior. Every
shock leaves a permanent mark!

Next: The formal notion of stationarity makes this idea precise.
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lllustration: AR(1) with p > 1

Impulse Response Functions for Different Persistence Levels
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Why Stationarity Matters: A Cautionary Example

Consider a simple AR(1) process:
Yo =+ pYe1+ U, U~ (0,02)

If p = 1, the process has a unit root:

t

Yi=Yi1+Uu = Yt=}’0+ZUi

i=1

Implication:
> Variance grows over time: shocks have permanent effects.
» The process never settles around a stable mean.

Why this matters:
» When moments change over time, regression results lose meaning.
» Econometric theory (LLN, CLT) relies on time-invariant distributions.
> That property is what we'll call stationarity.
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lllustration: Stationary vs. Unit Root AR(1)

Simulated AR(1) Processes

Stationary (Persistence = 0.8) Unit Root (Persistence = 1)

154

104

54

T T T T T T T T
0 50 100 150 200 0 50 100 150 200
Time

Grey band shows +2 standard deviations under stationarity

Interpretation:

> Left: Stationary AR(1) with p = 0.8 fluctuates within a constant standard
deviation band .

» Right: Unit root process (p = 1) shows variance increasing over time.

26/78



Stationarity: When the Rules of the Game Don’t Change

A process is stationary if its statistical properties stay the same over
time.

Formally (weak stationarity):
1. Ely:] = u (constant mean)
2. var(y;) = o, (constant variance)
3. cov(y:,Yi_k) = 7« depends only on the lag k
Interpretation:
» The process behaves the same way today, tomorrow, or next year.
» We can use one sample path to learn about its long-run distribution.

> If these properties drift over time — inference breaks down.
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Condition for Stationarity

Iterate the process:

t—1

YtZH(1+P+PQ+"')+Pt}’o+ZPiUH~
i=0

For |p| < 1:
pt — 0 =y, forgets its starting point.

Therefore: The AR(1) is stationary if and only if |p| < 1.
Intuition: shocks fade out geometrically.
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When Stationarity Meets a Trend

If many time series, like stock prices or GDP, keep going up,
doesn't that break AR(1) stationarity?
No!

> A process can be stationary around a trend.
» The trend may be:

> Deterministic: fixed slope § (trend-stationary).
» Stochastic: random walk component
(difference-stationary).

Example:

Y=+ 0t+ p(Yr—1 —p— 0t —1)) + uy

> St deterministic linear trend
» p: AR(1) persistence around that moving mean
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lllustration: Stationarity with a Trend

Trend—Stationary AR(1) Process
Vo=t +p(yis —p-3(t-1)) +u,

AR(1) with deterministic trend De-meaned (stationary) part

Yt
o

0 50 100 150 200 0 50 100 150 200
Time

A trend doesn't violate stationarity: We just need to remove it to
analyze persistence.
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Stationary vs. Ergodic: The Intuition

Stationary: The rules of the game don't change over time.
> Mean, variance, and covariances stay constant.

» What happens today follows the same distribution as what could
happen tomorrow.

» Required for a process to have stable long-run properties.

Ergodic: The process is not path dependent.
» In the long run, the starting point doesn’t matter.
> Past events lose influence as time passes.

> Time averages = population averages = allows inference from a
single realization.

Example: Is the prevalence of QWERTY keyboards a case of path
dependence (non-ergodicity)?
See: Paul David (1985), AER, and Liebowitz & Margolis (1994), JEP.
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Ergodicity: The Intuition

In time series, we usually observe only one realization of the process
{yt}thl, i.e. one country’s GDP, one firm’s stock price, one macro
variable.

The question: Can we learn about population properties (like E[y:])
from this single history through time?

Analogy:
» In cross-sections, we average over individuals.

» In time series, we average over time.

Key idea:
> Stationarity says the process behaves the same way at all times.
» Ergodicity says that one long history reveals those stable
properties.

If a process “forgets” where it started, its long-run average tells us the

true mean.
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Ergodicity: Formal Statement

Formally, a process {y;} is ergodic if time averages converge to
ensemble averages:

;
_ 1 p
YTZ?;% = E[y].

Why this matters:
» Stationarity = moments exist and don't change over time.

» Ergodicity = those moments can be consistently estimated
from one time series.

» Justifies treating time averages as estimators of expected
values.

Example:

For a stationary AR(1) process with |p| < 1, the influence of initial
conditions fades away, so the sample mean converges to the true
mean.
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lllustration: Ergodicity

Ergodicity in a Stationary AR(1) Process
Time averages from different realizations converge to the same long-run mean

Cumulative (time) mean
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Example: Stationary but Non-Ergodic Process

Idea: A process can have constant unconditional moments
(stationary) but still fail to “forget” its initial state (non-ergodic).

Example: Mixture of Two Mean Regimes

+1, with prob. 0.5 N
Y= pi+ U, Hi = and u; ~iid. N(0,1)
—1, with prob. 0.5

Each realization draws its own regime ; once and for all att = 0.

Properties:
> E[y:] =0, var(y;) = 2 = stationary.
» But each sample path remains around its own mean p; = +1 forever.
» The sample mean y; — y; instead of 0.
» = Time averages # Ensemble averages = non-ergodic.
Intuition: The process has stable distributional moments, but it never

“mixes” across its two mean regimes.
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lllustration: Stationary but Non-Ergodic

Stationary but Non—Ergodic Process
Each realization has a fixed mean; sample means converge to +1 instead of 0

Negative mean regime Positive mean regime

Cumulative (time) mean

. . . . . : .

0 50 100 150 200 0 50 100 150 200
Time

Constant unconditional variance (stationary), but series retain distinct long-run means (non-ergodic).
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Deriving the Covariance for AR(1)

By repeated substitution:
et = Ut + pUt_1 + p°Ut_s + p°Us_g + - -
Variance:
Var(et) = o2 + pPo2 + ptol + plol+ - =o2(1+p* +p* +--1)
A geometric series:

1+p°+p 4= for|p| <1

1— p2?

2
= Var(et) = . “u 5

—p
Covariances:

Cov(et,et—s) = p*Var(er) = 1p_

Hence,
Corr(et,e1_s) = p°,
which decays geometrically with the lag s.
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Mean and Variance of a Stationary AR(1)

If |p| < 1:

n
Ely] = — = )
D/t] 1 — pa Var(yt) 1 — p2
Interpretation:
» u/(1 — p) is the level around which y; fluctuates.

» Higher |p| — larger variance — more persistence.
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Autocorrelation Function (ACF) of AR(1)

_cov(Y,Yiok)  k
P ar(yy) -

Implications:
» Correlation between y; and y;_, decays geometrically.

» The closer |p| is to 1, the slower the decay — strong
persistence.

» Negative p — alternating signs in p.
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lllustration: Autocorrelation Function of AR(1)

Autocorrelation Functions of AR(1) Processes
rho = 0.8: slow decay | rho = —0.7: alternating signs

rho=0.8 rho=-0.7
1.04
0.5
< . ||||I|||....... ! ‘|||'.'-'.'.'.'-'
-0.5+ ‘
T T T T T T T T
0 10 20 30 0 10 20 30
Lag

The first bar (lag 0) equals 1 by definition, since any variable is perfectly
correlated with itself.
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Covariance Matrix of AR(1)

For T observations from a stationary AR(1):

- p p:‘l
p 1 p PP pT_2
Sy=oZ| PP L s

prop p e 1
= This is exactly the 2 matrix structure we introduced earlier in GLS.

It formalizes how serial correlation generates non-diagonal
covariance.
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OLS with AR(1) Errors: When Does It Work?

Consider the model:

Vi = X8 + et €t = pet—1 + U, Ut~ (0,03)

Assume the process is:
> Stationary: mean, variance, and covariance constant over time

» Ergodic: long-run averages represent population moments

Then:

» OLS is unbiased and consistent if regressors are strictly
exogenous:

Elg|X] =0
> Butif y;_, appears as a regressor, it is correlated with &
Cov(yt—1,¢et) = pVar(et—1) # 0

= OLS becomes biased and inconsistent.
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The AR(p) Process

Generalizing AR(1):
Yo =i+ prYi1+ paYia + -+ ppYep + U, U~ (0,07).
Stability condition: All roots of
L—p1Z—poz® — - — ppzP =0

must lie outside the unit circle (|z| > 1).
Estimation:
» OLS s consistent if u; is white noise and y; is stationary.

» Information criteria (AIC, BIC) help choose lag order p.
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The Lag Operator: Intuition

Definition:
Lyc=Yi1, LYi=yi2 yi=yir
The lag operator simply “shifts” a variable back in time.

Why we use it:

» Compactly writes dynamic models, e.g.:
(1= pL)yt = p+ur.

> Treats lagged values like algebraic terms in a polynomial.

> Makes it easier to manipulate distributed lags or derive long-run
effects.

Example: (1 — 0.5L)y; = us = yr = ur + 0.50t—1 + 0.25U¢_2 + . ..
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Lag Polynomials and Rational Lag Models
Lag polynomial notation:
A(L)=1—piL — pol? — -+ — ppLP.

Autoregressive model:
A(L)yt = U;.

Distributed-lag model:
¥t =B(L)xt +u;, B(L) =bg+biL +byl? +---

Rational-lag form:

_BL, Ly
yi= A(L) t + Ut
combines dynamic adjustment (denominator) and delayed responses

(numerator).

Key takeaway:

Multiplying or inverting lag polynomials works like algebra—just
remember L means “one step back in time.”
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Mean and Long-Run Effects in Lag Models

For a distributed-lag model

yt = bOXt + let,l —|— b2Xt72 + e + uf7
the coefficients b; describe how past values of x influence y;

Key summary measures:

Short-run effect: by

Long-run multiplier: > " b
i=0

Mean lag: —%;Olgi
i=0 Vi

Intuition:
» by: immediate impact of a change in x;.
» Long-run multiplier: total accumulated response over time.
» Mean lag: average delay until the effect of x; is felt.
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9.4: Inference and Robust Estimation




Why the OLS Covariance Formula Fails

OLS estimator: .
Bors = (X'X) "' X'y
Var(fors|X) = (X'X) 71X Var(|X)X(X'X)~*

Under serial correlation:

Var(e|X) = 0°Q, with Q= pl'/

Var(Bos|X) = o>(X'X) I X'QX(X'X) !
Problem: Using o2(X’X)~! (the “usual” formula) implicitly assumes

Q=Ir
= OLS SEs are too small when residuals are positively autocorrelated.
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What Standard Errors Do We Want?

If errors follow an AR(1) process, we want Var(,B’OLS|X) to be robust to
serial correlation:

T T
Var( <:§:::E::X}X 5163) _1.
t=1s

1

Simpler representation:
(X'X) X QX (X' X)
where ) estimates the serial covariance of residuals.

Two main approaches:

> (1) Newey—-West (HAC) SEs — consistent under general
autocorrelation and heteroskedasticity.

> (2) Feasible GLS (Prais—Winsten or Cochrane—-Orcutt) — if AR(1)
structure is approximately known.
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Testing for Autocorrelation

» Quick diagnostic: Regress residuals é; on their lagged values
ét,1: A
= pe_1 + V¢

A significant p indicates autocorrelation. (Use robust SEs if
heteroskedasticity is suspected.)

Durbin—Watson (DW) test:

DW = Zt Q(et ef 1)
Zt:l e?

—2(1-p)

» DW =~ 2: no autocorrelation (5 ~ 0)
» DW < 2: positive autocorrelation (p > 0)
> DW > 2: negative autocorrelation (5 < 0)
Limitations: DW is mainly valid for AR(1) errors and models without

lagged dependent variables.
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Lagrange Multiplier (Breusch—Godfrey) Test

General and flexible test for serial correlation:

1. Estimate the model and obtain residuals é;.
2. Regress é; on its own p lags and the original regressors x;:

p
e =ap+ Z ps€t_s + Xy + Uy

s=1
3. Test joint significance of p1, ..., pp.
Test statistic:
TR® ~ x*(p)
under the null hypothesis Hy : p1 = --- = pp = 0.

Interpretation:
» High R? = strong evidence of autocorrelation.

» Works with lagged dependent variables and higher-order AR
processes.
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Q-Test for Serial Correlation (Ljung—Box Statistic)

Often used when there are no regressors x; (pure time series):

(IJ“[\’J

Q=TT+ -2 ~ (P)

s=1

S

where ;
Dt—st1 €te—s
rs==_—"7——
Dot &
Interpretation:
> Q' aggregates autocorrelations up to lag P.
» Significant Q' = reject Hy: residuals are white noise.

> Especially useful for diagnosing ARMA model residuals.

Remark: The Ljung—Box version improves small-sample accuracy
over the original Box—Pierce test.
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Adding Regressors: What Changes?

So far, we studied univariate processes:

Yt = 1+ pyi_1 + U, u; ~ white noise.

Now let’s allow y; to depend on external variables x;:

Yt = X3 + Uy

New issues in a time—series context:

» Time ordering: x; must be known at time t. = requires strict
exogeneity: E[u|xs] = 0 for all s.

> Persistent regressors: Serially correlated x; can make residuals
appear autocorrelated.

» Dynamic misspecification: Autocorrelation in ; may signal
missing lags:
Yo = pyr-1 + X8 + et
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Review: Lagged Dependent Variables

In dynamic models, the lagged outcome y;_; often appears as a
regressor:
Yo = pYe-1 + X8 + et

Problem: If ¢ is serially correlated, y;_; becomes correlated with &¢:

cov(Yi_1,et) 0.

Consequence:
» OLS is biased and inconsistent.

» The bias depends on p and the degree of autocorrelation.

Remedies:
> Use instrumental variables (e.g. y;_» or external instruments).

» Estimate by Arellano—Bond GMM if in panel context.
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9.5: Forecasting and ARMA Models




Forecasting in an AR(1) Model

Consider the stationary AR(1) process:

Y=+ pYr-1+ Ut ur ~ (0,03), |p| < 1.

The optimal h-step-ahead forecast (under squared-error loss):

Vet =p(l+p+--+ A7) + 0yt = Balyrin).

Forecast properties:

> As hincreases, p" — 0 = forecasts converge to the
unconditional mean p/(1 — p).

» Forecasts are linear in the most recent value y;.
» The smaller |p|, the faster convergence to the long-run mean.

Intuition: Persistence (|p|) governs how quickly shocks lose
predictive power.
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Forecast Error Variance in AR(1)

For an h—step—ahead forecast:

h—1
Yerh = Yerht = Z p'Utin—i-

i=0

Hence

var(yesh — Yerny) = oy

Interpretation:
» Forecast uncertainty grows with the horizon h.
> As h — oo, it approaches the unconditional variance 02 /(1 — p?).

> More persistence = slower convergence to long-run variance.
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Forecast Error Variance in an AR(1) Process

Forecast Error Variance in an AR(1) Process

h—1 Forecast variance grows with horizon
— i and approaches long-run limit
~ _ i
Yieh = Yitht = E PUtih—i o — 05 — 07 - 03
i=0

R 21 _ p2h
Var(yein — Yerhie) = ey

Forecast error variance
w

0 10 20 30 40
Forecast horizon (h)

» Forecast uncertainty increases with horizon h.

» Dashed lines show the long-run limit:

2
lim Var = _u
h—o0 1-— p2

» Higher persistence p = slower convergence.
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From Persistence to Short Memory

So far, we've modeled dependence as coming from past values of y;:

Yt =+ pyi—1 + s (AR(1))

But time dependence can also come from overlapping shocks:
Yo =+ U+ 0up_q.
This is a Moving Average (MA) model.

Intuition:

» Each period’s value reflects not only today’s shock but also
yesterday’s.

» Creates short-lived correlation even though u; are i.i.d.

» Unlike AR(1), dependence dies out quickly.
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The Moving Average Model

A first-order Moving Average process:
Yi=pu+ U+ 0ur_q, U~ iid. (0,05)

Interpretation:
» u;: new shock today
» fdu;_1: echo of yesterday’s shock
» Correlation comes from overlapping terms u;_;
Autocovariances:
Y0 = (14 6%)ag,
= bog,
w =0 fork>2.

Implication: Serial correlation is real but short-lived: one period only.

58/78



Impulse Response: AR(1) vs. MA(1)

Impulse Responses: AR(1) vs MA(1)
AR(1): gradual geometric decay | MA(1): effect lasts one period

AR(1) MA(L)
1.00
0.751
= 0.504
0.254
0.00 -==-===xmmssmms s T
5 10 15 20 5 10 15 20
Time

AR(1): Shock effects decay geometrically.

MA(1): Shock lasts one period only, the system “forgets” instantly.

59/78



AR(1) vs. MA(1): Two Ways to Create Dependence

Autoregressive (AR(1)) Moving Average (MA(1))
Yi=pn+pYi—1 + U Yt =+ U+ 0us—1
Dependence through past y: Dependence through past shocks u;

Persistence can last many periods  Correlation dies out after one lag

Models inertia or state dependence  Models short-lived noise or adjust-
ment

Both generate autocorrelation, but with very different persistence patterns.
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From AR to ARMA Models

Observation: Pure AR models capture persistence, but sometimes
shocks have short-run patterns not explained by past y; alone.

Idea: Allow the error term itself to follow a moving-average (MA)
process:

Ye=p+p1Yi—1+ -+ ppYip + Ut + 01Ut + - - + OqUs_q.
= This is an ARMA(p, g) model.

Interpretation:

> AR part: captures state persistence (y:_1, ¥t_o,...)

» MA part: captures shock persistence (U;_1,Ut_2,...)

» Together they describe dynamics using a compact combination
of both effects.

Next: Estimating ARMA models and using them for multi-step
forecasts.
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The Partial Autocorrelation Function (PACF)

Motivation: After learning about ARMA models, we need tools to
identify their order. The ACF alone cannot tell us whether persistence
comes from AR or MA terms.

Definition: The PACF measures the correlation between y; and y;_,
after controlling for all intermediate lags:

k= Corr(ye, Ye—k | Yt—1, -+, Yt—k+1)-

Typical patterns:
» AR(p): PACF cuts off after lag p, ACF decays geometrically.
» MA(q): ACF cuts off after lag g, PACF decays gradually.
» ARMA(p, q): both ACF and PACF decay.

Use: Compare sample ACF and PACF plots to identify candidate
model orders.
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ACF vs. PACF: Math and Intuition

Autocorrelation Function (ACF):

pk = corr(Ye, Yi—k)

Captures all correlation between y; and y;_y, including indirect paths
through intermediate lags (yi_k— Yt k41— - — Yi—1— Y1)-

Partial Autocorrelation Function (PACF):
ok = cornye, Yek |Yi—1s- - Yeoks1)
Removes those indirect paths; measures the net/direct k-step link.

Operational definitions:
» ACF: sample correlation of (y:, y:_x)-

» PACF: coefficient on y;_, in the OLS of y; on (Vi—1,...,¥t_«)-
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PACF: A Clean Computation View

Let P¢_; be the linear projection on (y:_1,...,Y¥:_k+1). Define residuals
o =Y—Pewyy, Yk = Yk — PV
Then the partial autocorrelation at lag k is simply
ok = corr(yi, Ye—«),

i.e. the correlation of the residualized current value with the
residualized k-lag.

Intuition in one line:
ACF mixes direct and indirect persistence; PACF strips out the
middlemen and keeps only the direct k-step link.
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lllustration: ACF and PACF Patterns

ACF and PACF Patterns for AR(1) vs MA(1)
ACF decays for AR(1); PACF cuts off after lag 1: and vice versa for MA(1)

AR(1) MA(1)
0.6
0.44
3
ul
0.24
5
Z 0.04
[S
S J
S o6
0.4
e
0.24 3
m
0.04
~0.24
-0.4-+ :
0 5 10 15 20 0 5 10 15 20
Lag

> AR(1): ACF decays gradually; PACF cuts off after lag 1.
» MA(1): PACF decays gradually; ACF cuts off after lag 1.

» Both panels help identify whether persistence arises from
autoregressive or moving-average terms.
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ACF and PACF of ARMA(1,1)

ACF and PACF of ARMA(1,1) Process

phi =05, theta = 0.5

Autocorrelation Function (ACF) Partial Autocorrelation Function (PACF)
1.0 1.04
0.5+ ‘ 0.5
0.0 ||ll‘ 0.0 :,:'::l::":I:'.::::::::::::::::::::::::::::
-0.5 ~0.5
-1.0 -1.0
T T T T T T T T
5 10 15 20 5 10 15 20
Lag Lag

> Both ACF and PACF decay gradually — neither cuts off sharply.
» This “tailing off” pattern is characteristic of mixed ARMA processes.
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Differencing and ARIMA (One-Slide Summary)

Why difference? Make a nonstationary series stationary in mean.

Operators: Ay, =y —yi_1 = (1— L)y, Ay, = (1 — L)%,
Seasonal differencing: Agy: =y —yi—s = (1 — LSy, ASDAdy, for
seasonal & nonseasonal nonstationarity.

ARIMA model (backshift L):

oL) -0 =L yy=c+6(L) u,  u~iid. (0,02
N~ —— S~~~
AR(p) differencing MA(q)

Nonseasonal ARIMA(p, d, q); with seasonality:
ARIMA(p, d. q) x (P,D,Q)s.
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9.6: Conditional Heteroskedasticity




Motivation for ARCH Models

Until now we modeled correlation in the mean. But economic and
financial data often show dependence in the variance:

» Periods of calm alternate with periods of high volatility.

» Large shocks tend to cluster together.
Idea: Let conditional variance depend on past squared shocks:

U? =qap+ alef_l, ag >0, ag > 0.

This is the ARCH(1) model (Autoregressive Conditional
Heteroskedasticity)
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The ARCH(1) Model

Model:
Yo = X8 + e, €t = U, utNN(O,atZ),

otz =ap+ a1Ut2_1~
Properties:
> E[u] =0, Var(uy) = 122~ ifaq < 1.
» Captures volatility clustering: high variance follows large shocks.

» OLS remains unbiased but inefficient; MLE is preferred.
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lllustration: Volatility Clustering in ARCH(1)

ARCH(1) Process Simulation
Volatility clustering: conditional variance spikes after large shocks

Simulated returns
3
24
14
0-
14
24
Conditional variance
4
24
0 T
0 100 200 300 400 500
Time

Periods of high volatility follow large shocks, even though E[u;] = 0.
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ARCH-in-Mean and Summary

ARCH-in-Mean (ARCH-M):
Vi =+ Ao} + uy, 0f =g+ Ui .
Interpretation:

» Risk (variance) directly affects the conditional mean.

» Useful in finance (risk—return tradeoff) and macro uncertainty
models.

Summary Table:

\ Mean Equation \ Variance Equation
ARMA | yr = ¢(L)y: + 0(L)u; Constant variance
ARCH Same mean 0f = ap +aqUf 4

ARCH-M | E[y;|:—1] depends on o7 | same as above
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9.7: Vector Autoregression (VAR) Models




The VAR(p) Model

When multiple time series influence each other:
yi=C+Aiyi—1 +Asyio+ - +Aytp+u, u~ (0,5)

where y; is an m x 1 vector of jointly determined variables.
Example:
Yt C1 Yit—1 Uit
= A ’
(}’2t) <C2) A <}’2,t—1> + (U2t>

Interpretation:
» Captures feedback and interdependence between variables.

» Each equation resembles an AR model but includes lags of all
variables.
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The VAR(p) Model

When multiple time series influence each other:
yi=C+Aiyi—1 +Asyio+ - +Aytp+u, u~ (0,5)

where y; is an m x 1 vector of jointly determined variables.
Example:
Yt C1 Yit—1 Uit
= A ’
(}’2t) <C2) A <}’2,t—1> + (U2t>

Interpretation:
» Captures feedback and interdependence between variables.

» Each equation resembles an AR model but includes lags of all
variables.
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Impulse—Response Analysis

From the VAR(p) we can write a moving—average representation:
yi=p+ Z Y.
i=0
Impulse—-Response Function (IRF):

Oyt ih
Ty, = 2t
8lh

Interpretation: How a one-unit shock to variable j today affects
variable i in the next h periods.
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Further Topics in Time-Series Econometrics




A Glimpse Beyond This Lecture

We will not cover the following topics in detail, but they are
central to modern time-series econometrics and forecasting.
Consider them as directions to explore if you are intersted in
time-series.

> Forecasting beyond ARMA: ARIMA, exponential
smoothing, and Kalman filtering; practical tools for
prediction.

» Structural change and model stability: Chow, QLR, and
Bai—Perron tests for detecting breaks in economic
relationships.

» Conditional heteroskedasticity: ARCH and GARCH models
for time-varying volatility in financial and macro data.
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Forecasting Beyond ARMA: Practical Methods

Goal: Predict future values of y; given past data and limited model structure.

Traditional econometric forecasting:
» ARIMA models: Combine differencing (I) with AR and MA terms to
handle trends and persistence.
> Exponential Smoothing (ETS): Adaptive weights that give more
importance to recent observations.

> State-space and Kalman filtering: Recursively update forecasts as new
data arrive.

Modern forecasting:
» Machine learning methods: Random forests, gradient boosting: strong
at short-horizon forecasting.
> Combination forecasts: Average multiple model forecasts; improves
robustness to misspecification.

> Rolling-origin evaluation: Estimate model ont < T, forecast t + 1, roll
forward, compute RMSE.

But: Forecasting is about capturing persistence and adaptability. Simple
models often perform surprisingly well out-of-sample.
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Detecting Structural Change and Breaks

Motivation: Economic relationships may shift due to policy, technology, or
crises. A model estimated on past data may no longer describe today’s world.

Tests for breaks:

> Chow test: Compares fit before and after a known break date. Use when
the date of change is suspected (e.g., policy reform).

> Quandt Likelihood Ratio (QLR) test: Searches over possible
breakpoints; identifies most likely break.

> Bai-Perron test: Allows multiple breaks at unknown dates; widely used
in macro and finance.

Intuition:

» If model residuals or coefficients shift abruptly, the process may have
new parameters.

» Structural breaks are about parameter instability not model failure.

Practical tip: Always check model stability when working with long time
spans or major events (e.g., COVID, Euro introduction).
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From ARCH to GARCH and Beyond

Why move beyond ARCH? ARCH(1) captures volatility clustering but
often needs many lags to fit real data. GARCH (Generalized ARCH)
makes this more parsimonious:
0f = o+ Ui | + ot .
Interpretation:
» Combines shock persistence (u? ;) and volatility persistence
(‘75171)~
> Implies that volatility responds slowly to shocks; exactly what
we observe in markets.

Common extensions:

» EGARCH (Exponential GARCH): captures asymmetry (“bad news
increases volatility more”).

» TGARCH (Threshold GARCH): allows separate parameters for
positive/negative shocks.

» Multivariate GARCH: tracks time-varying covariances across

assets.
78/78



	9.1: The Generalized Regression Model
	9.2: Dynamic Linear Models
	9.3: Serial Correlation and Stationarity
	9.4: Inference and Robust Estimation
	9.5: Forecasting and ARMA Models
	9.6: Conditional Heteroskedasticity
	9.7: Vector Autoregression (VAR) Models
	Further Topics

