

Advanced Econometrics

Lecture 8: Nonlinearities and Flexible Functional Forms

Eduard Brüll
Fall 2025

Advanced Econometrics

8. Nonlinearities and Flexible Functional Forms

- 8.1 Nonlinearities within OLS
- 8.2 Polynomial Models
- 8.3 Confidence Intervals and Leverage
- 8.4 Specification Choice: Information Criteria and Penalized Regression
- 8.5 Local Linear Regressions
- 8.6 Beyond the Mean: Quantile and RIF Regressions

Literature: Wooldridge Ch. 6 & 8; Greene Ch. 9; Hastie & Tibshirani (1990)

8.1: Nonlinearities within OLS

Review: Linear in Parameters \neq Linear in Variables

- ▶ OLS assumes the model is linear in parameters, not necessarily in variables.

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$$

is still a linear regression model.

- ▶ The conditional mean function $E[y|X]$ can be nonlinear in x .
“Linear” \Rightarrow additive in β , not necessarily in x .
- ▶ Nonlinearities in variables allow marginal effects to vary with x .

$$\frac{\partial y}{\partial x} = \beta_1 + 2\beta_2 x$$

Marginal Effects that Depend on x

- ▶ In a linear model, $\partial y / \partial x = \beta$ is constant.
- ▶ In a nonlinear function of x , the slope changes:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$$

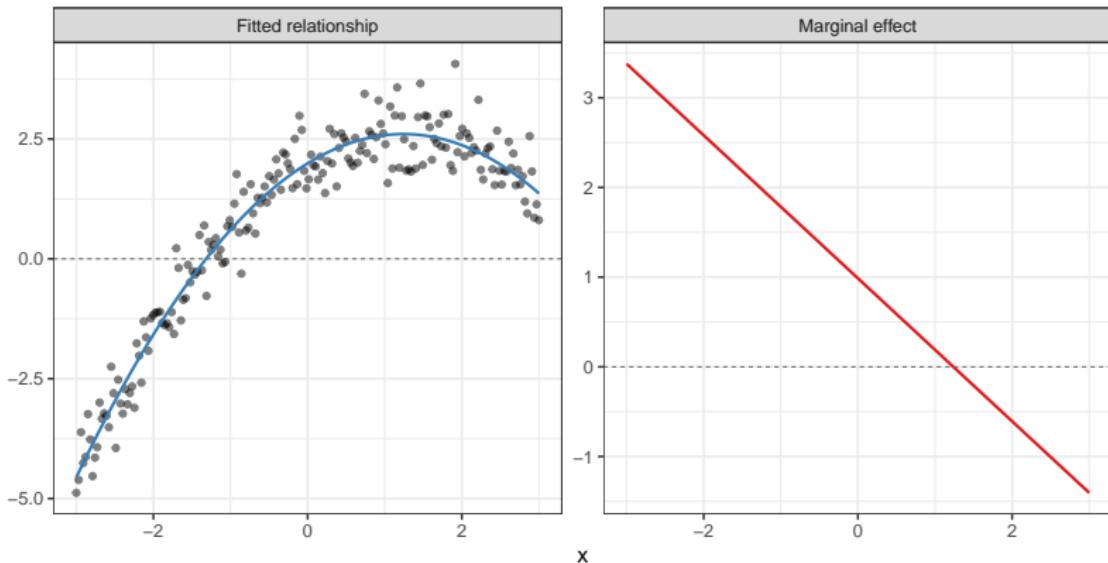
$$\Rightarrow \frac{\partial y}{\partial x} = \beta_1 + 2\beta_2 x$$

- ▶ Interpretation:
 - ▶ $\beta_2 > 0$: increasing effect of x .
 - ▶ $\beta_2 < 0$: diminishing returns.
- ▶ Visual check: plot $\hat{y}(x)$ or $\frac{dy}{dx}$.

Illustration: Marginal Effect for a Quadratic Function

Quadratic Model and Marginal Effects

Fitted: $y = 1.99 + 0.99x + -0.4x^2$



Polynomial Models

- ▶ General form:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \cdots + \beta_r x_i^r + \varepsilon_i$$

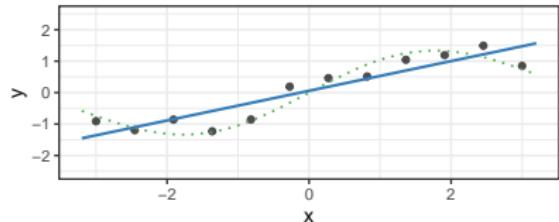
- ▶ Captures curvature in $E[y|x]$ while remaining linear in β .
- ▶ Choose degree r :
 - ▶ Sequential F -tests for higher-order terms.
 - ▶ Information criteria (AIC, BIC) for fit vs. complexity.
 - ▶ Or choose via LASSO-regression (more later)
- ▶ Watch out for:
 - ▶ Extrapolation instability at high degrees.
 - ▶ Multicollinearity among x^j terms.

Illustration: Beware of High-Degree Polynomials

Increasing Polynomial Degree Eventually Fits All Points Exactly
Illustration of polynomial interpolation vs. model complexity

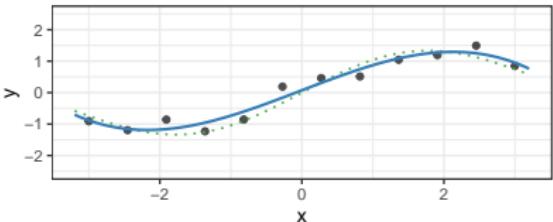
Polynomial degree = 1

Low degrees underfit; fit improves as degree increases



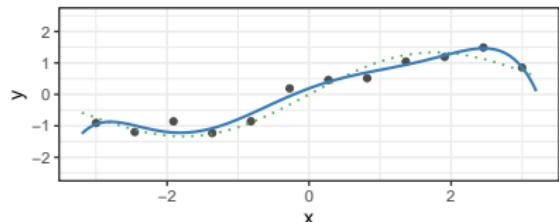
Polynomial degree = 3

Low degrees underfit; fit improves as degree increases



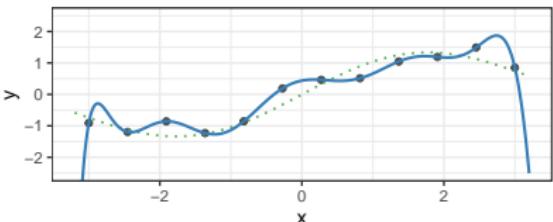
Polynomial degree = 6

Low degrees underfit; fit improves as degree increases



Polynomial degree = 11

Degree $n-1$ interpolates all points exactly



Dummy Variables

- ▶ A **dummy variable** (or indicator) takes values 0 or 1 to represent categories:

$$D_i = \begin{cases} 1 & \text{if observation } i \text{ belongs to group A} \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ Model with one dummy:

$$y_i = \beta_0 + \beta_1 D_i + \varepsilon_i$$

- ▶ Interpretation:

$$E[y|D = 1] - E[y|D = 0] = \beta_1 \Rightarrow \beta_1 = \text{mean difference between groups.}$$

- ▶ You can **one-hot encode** multiple categories this way, but you must **omit one base category** to avoid perfect collinearity ("dummy variable trap").

$$y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \cdots + \varepsilon_i$$

- ▶ Interactions allow slope differences by group:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 D_i + \beta_3 (x_i \times D_i) + \varepsilon_i$$

Interaction Terms

- ▶ Allow the effect of one regressor to depend on another.

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \beta_3 (x_i \times z_i) + \varepsilon_i$$

- ▶ Marginal effect of x :

$$\frac{\partial y}{\partial x} = \beta_1 + \beta_3 z$$

- ▶ Examples:
 - ▶ Gender differences in wage returns to education.
 - ▶ Policy effect only active in treated regions.
- ▶ Always include base levels of z_i and x_i for if you are interested in an interaction term!

Interactions with Dummy Variables

Interacting a continuous variable x_i with a dummy D_i allows for **group-specific slopes**.

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 D_i + \beta_3 (x_i \times D_i) + \varepsilon_i$$

The model implies two regression lines:

$$E[y | D] = \begin{cases} \beta_0 + \beta_1 x, & \text{if } D = 0, \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3)x, & \text{if } D = 1. \end{cases}$$

Interpretation:

- ▶ β_2 : difference in intercepts between groups ($x = 0$).
- ▶ β_3 : difference in slopes between groups – how the effect of x changes when $D = 1$.

Graphically:

Parallel lines if $\beta_3 = 0$, different slopes if $\beta_3 \neq 0$.

Example:

- ▶ Wage regression with x = years of education and D = female.
- ▶ $\beta_3 < 0$: smaller returns to education for women.

Why Logarithmic Transformations?

- ▶ Many economic relationships are multiplicative rather than additive:

$$y = Ax^\beta e^\varepsilon$$

- ▶ Taking logs makes this relationship additive:

$$\ln y = \ln A + \beta \ln x + \varepsilon$$

- ▶ Now, β approximates how y changes in **percentage terms** when x changes in percentage terms.
- ▶ Intuition:

A 1% increase in $x \Rightarrow$ about a $\beta\%$ change in y

Why the Log Approximation Works

- ▶ We want to understand why a **change in the log of x** measures a **percentage change in x** .

$$\Delta \ln x = \ln(x + \Delta x) - \ln(x) = \ln\left(1 + \frac{\Delta x}{x}\right)$$

- ▶ Let $z = \frac{\Delta x}{x}$ = the **relative (percentage) change** in x .
- ▶ Expand $\ln(1 + z)$ around $z = 0$ (using a Taylor series):

$$\ln(1 + z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots$$

- ▶ When z is small (say a few percent), the higher-order terms are negligible:

$$\ln(1 + z) \approx z$$

- ▶ Therefore:

$$\Delta \ln x = \ln(x + \Delta x) - \ln(x) \approx \frac{\Delta x}{x}$$

- ▶ So a small **percentage change** in x produces roughly the same **change in $\log(x)$** .

Log Models and Interpretation

- ▶ Using the approximation:

$$\text{Linear-log: } y = \beta_0 + \beta_1 \ln x + \varepsilon \quad \Rightarrow \quad \frac{\Delta y}{\Delta x/x} \approx 0.01\beta_1 \text{ (semi-elasticity)}$$

$$\text{Log-linear: } \ln y = \beta_0 + \beta_1 x + \varepsilon \quad \Rightarrow \quad \frac{\Delta y/y}{\Delta x} \approx \beta_1 \text{ (semi-elasticity)}$$

$$\text{Log-log: } \ln y = \beta_0 + \beta_1 \ln x + \varepsilon \quad \Rightarrow \quad \frac{\Delta y/y}{\Delta x/x} \approx \beta_1 \text{ (elasticity)}$$

- ▶ The log transformation thus links linear regression coefficients to interpretable economic quantities (percent or proportional effects).

How Accurate is the Log Approximation?

Recall:

$$\ln(1 + z) \approx z \quad \text{for small } z = \frac{\Delta x}{x}.$$

- ▶ Compare the exact and approximate values:

Relative change z	$\ln(1 + z)$	Approx. z	Error (%)
0.01	0.00995	0.01000	0.5%
0.05	0.04879	0.05000	2.5%
0.10	0.09531	0.10000	4.9%
0.25	0.22314	0.25000	12.1%
0.50	0.40547	0.50000	23.3%
1.00	0.69315	1.00000	44.3%

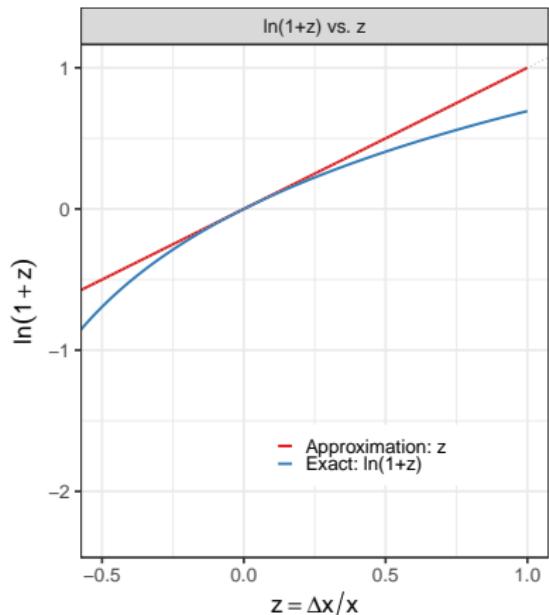
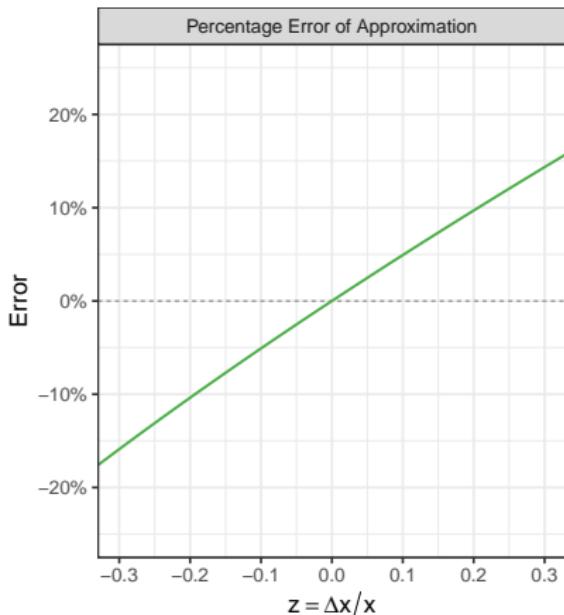
- ▶ The approximation is very accurate for small relative changes (say below 10%), but deteriorates for larger ones.
- ▶ Visually: $\ln(1 + z)$ bends below the 45° line as z grows.

Rule of thumb:

Use the log approximation only for $|\Delta x/x| \lesssim 0.1$.

Alternatively, economists often report **log points** directly instead of percentage points to avoid this approximation issue.

Illustration: Accuracy of the Log-Approximation



8.2: Polynomial Models

Functional Form and Economic Theory

Before relying on statistical tests, start from **economic theory**.

- ▶ Theory suggests shape restrictions: monotonicity, concavity, saturation, thresholds, etc.
- ▶ Example: diminishing returns \Rightarrow negative second derivative ($\beta_2 < 0$).
- ▶ Utility, production, or demand functions often imply specific curvature.

Polynomials can be a **flexible approximation** to such theoretical shapes:

$$f(x) \approx \beta_0 + \beta_1 x + \beta_2 x^2 + \cdots + \beta_r x^r$$

- ▶ But without theory, higher-degree terms risk capturing noise, not structure.
- ▶ Therefore:
 1. Use theory to motivate the expected shape of $E[y|x]$.
 2. Use statistical tests (e.g., sequential F-tests) only to check adequacy of that shape.

Sequential F-Tests for Polynomial Terms

- ▶ To decide whether to include higher-order terms, test:

$$H_0 : \beta_r = 0 \quad \text{vs.} \quad H_1 : \beta_r \neq 0$$

- ▶ More generally:

$$H_0 : \beta_{q+1} = \cdots = \beta_r = 0$$

- ▶ Compute the **F-statistic** comparing restricted (degree q) and unrestricted (degree r) models:

$$F = \frac{(SSR_R - SSR_U)/(r - q)}{SSR_U/(n - r - 1)}$$

- ▶ If $F > F_{r-q, n-r-1; 1-\alpha}$, reject H_0 → higher-degree terms improve fit.
- ▶ Repeat sequentially: degree 1 → 2 → 3 → ... until H_0 not rejected.

Example: Choosing Polynomial Degree

Fit models of increasing degree:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$$

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \varepsilon_i$$

and so on.

- ▶ Use the F-test to compare models, e.g.:

$$F_{2 \text{ vs. } 3} = \frac{(SSR_2 - SSR_3)/1}{SSR_3/(n - 4)}$$

- ▶ Stop adding terms when F -test is insignificant.

Important: Always include all lower-order terms when testing a higher-order one.

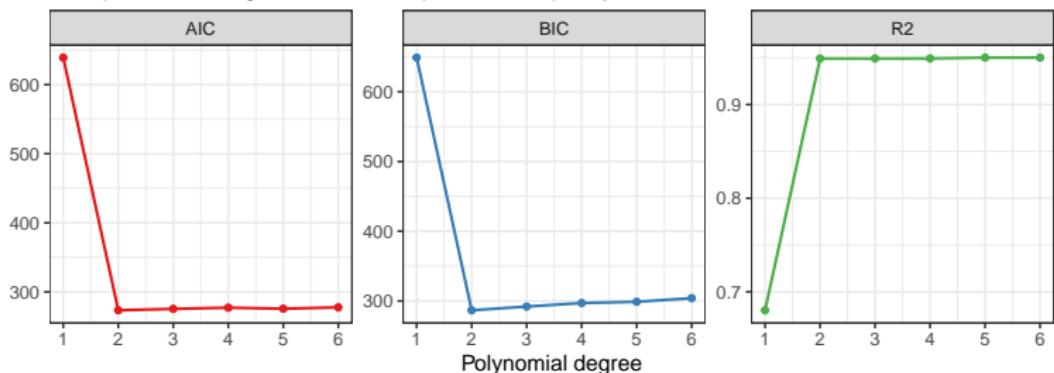
Model Fit vs. Complexity

- ▶ Higher-degree polynomials improve fit in-sample ($R^2 \uparrow$), but may overfit.
- ▶ Sequential F-tests guard against adding unnecessary terms, but:
 - ▶ Depend on chosen α (risk of multiple testing).
 - ▶ Are not ideal for predictive performance.
- ▶ Alternative: use **information criteria** like AIC/BIC to penalize complexity (more on them later).
→ Choose model with minimal BIC/AIC

Illustration: Polynomial Choice

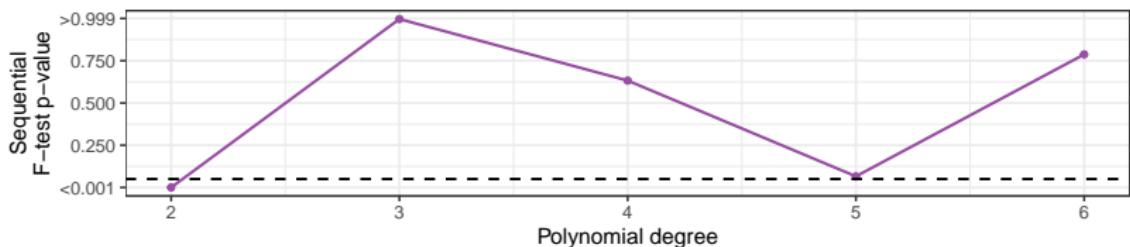
Sequential Model Selection by Polynomial Degree

Fit improves with degree, but AIC/BIC penalize complexity



Sequential F–Test for Added Polynomial Terms

Reject Null–Hypothesis ($p < 0.05$) up to cubic; higher orders add noise



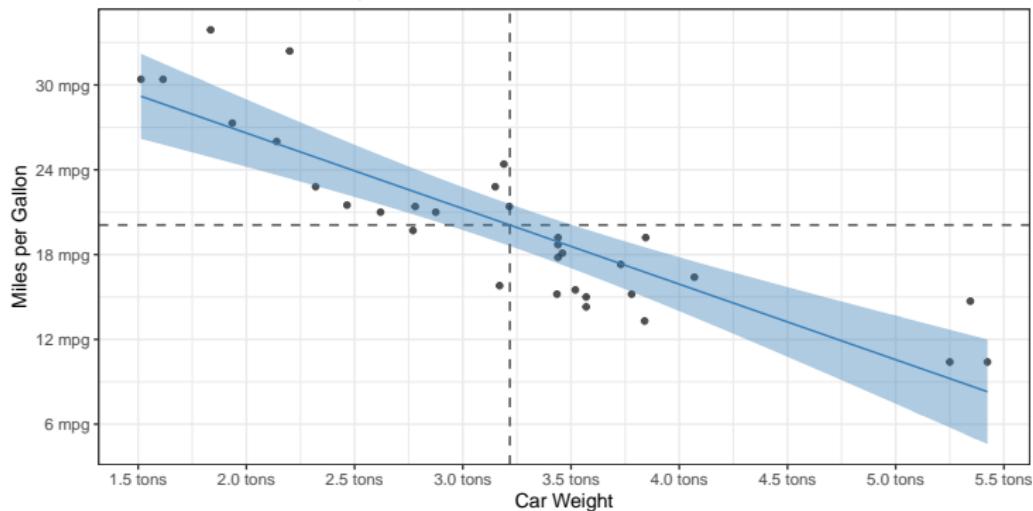
Simulation setup: $y = 2 + 1x - 0.4x^2 + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, 0.5^2)$

8.3 Confidence Intervals and Leverage

Confidence Bands in Practice

Confidence Intervals Widen Away from the Center

Dashed lines show mean weight and MPG



Example: Fitted line for the `mtcars` data. Confidence bands widen at the edges even though residual variance is constant.

Question: Why?

Variance of \hat{y}_0

Start from the linear model:

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon, \quad \mathbf{E}[\varepsilon] = 0, \quad \text{var}(\varepsilon) = \sigma^2 I_n.$$

The OLS estimator is:

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\varepsilon.$$

The fitted value at a new point x_0 is:

$$\hat{y}_0 = \mathbf{x}'_0 \hat{\beta} = \mathbf{x}'_0 \beta + \mathbf{x}'_0 (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\varepsilon.$$

Take expectations, using $\mathbf{E}[\varepsilon | \mathbf{X}] = 0$:

$$\begin{aligned} \mathbf{E}[\hat{y}_0] &= \mathbf{E}[\mathbf{E}[\hat{y}_0 | \mathbf{X}]] \\ &= \mathbf{E}[\mathbf{E}[\mathbf{x}'_0 (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\beta + \varepsilon) | \mathbf{X}]] \\ &= \mathbf{E}[\mathbf{x}'_0 \beta + \mathbf{x}'_0 (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \mathbf{E}[\varepsilon | \mathbf{X}]] \\ &= \mathbf{E}[\mathbf{x}'_0 \beta] = \mathbf{x}'_0 \beta \end{aligned} \quad \text{due to Exogeneity } \mathbf{E}[\varepsilon | \mathbf{X}] = 0$$

Variance of \hat{y}_0

Subtract the mean and use $\text{var}(a'Z) = a' \text{var}(Z)a$:

$$\text{var}(\hat{y}_0) = \text{var}(x_0'(X'X)^{-1}X'\varepsilon) = x_0'(X'X)^{-1}X' \text{var}(\varepsilon)X(X'X)^{-1}x_0.$$

Substitute $\text{var}(\varepsilon) = \sigma^2 I_n$:

$$\text{var}(\hat{y}_0) = \sigma^2 x_0'(X'X)^{-1}X'X(X'X)^{-1}x_0.$$

Simplify $X'X$ in the middle:

$$\boxed{\text{var}(\hat{y}_0) = \sigma^2 x_0'(X'X)^{-1}x_0.}$$

Interpretation:

- ▶ The term $x_0'(X'X)^{-1}x_0$ measures how far the point x_0 is from the **center of the data cloud**, taking into account how the data are spread and correlated.
- ▶ In geometry, this acts like a *stretch-adjusted* squared distance (the **Mahalanobis distance**)
- ▶ So, predictions made far from where most data lie have larger distance and therefore larger variance.

Example: Variance in a Bivariate Regression

For a bivariate model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

Then

$$X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad X'X = \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix}.$$

Invert:

$$(X'X)^{-1} = \frac{1}{n \sum (x_i - \bar{x})^2} \begin{bmatrix} \sum x_i^2 & -\sum x_i \\ -\sum x_i & n \end{bmatrix}.$$

Plug into $\text{var}(\hat{y}_0) = \sigma^2 x_0' (X'X)^{-1} x_0$, where $x_0 = (1, x_0)'$:

$$\begin{aligned} \text{var}(\hat{y}_0) &= \frac{\sigma^2}{n \sum (x_i - \bar{x})^2} \left[\sum x_i^2 - 2x_0 \sum x_i + nx_0^2 \right] \\ &= \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right]. \end{aligned}$$

Interpretation: The variance is smallest at $x_0 = \bar{x}$ (the sample center) and grows quadratically as x_0 moves away. This is why predictions at the edges have high uncertainty.

Leverage

The quantity

$$h_0 = x_0' (X'X)^{-1} x_0$$

is known as the **leverage** of point x_0 .

- ▶ Leverage measures how far x_0 is from the center of the data in feature space.
- ▶ Observations (or prediction points) with high leverage have greater influence on the fitted line.
- ▶ The variance of the fitted value is proportional to leverage
- ▶ We can compute **leverage for every observation** to gain insights if there are any points that are very influential for our fit.

Influence on Coefficients: DFBETA

- ▶ **Leverage** is informative for an observations influence on the fitted line. But this does not mean a high-leverage point necessarily affects our coefficient of interest.
- ▶ **DFBETA** measures the actual impact of each observation on each estimated coefficient:

$DFBETA_{ij} = \text{change in } \hat{\beta}_j \text{ when observation } i \text{ is removed.}$

- ▶ Intuition:
 - ▶ If one data point can noticeably shift a slope or intercept, its DFBETA will be large (positive or negative).
 - ▶ A DFBETA close to zero means the observation does not matter much for that coefficient.
- ▶ **Rule of thumb:** $|DFBETA_{ij}| > 2/\sqrt{n}$ indicates influential points.

Aggregating DFBETAs for Robustness and Diagnostics

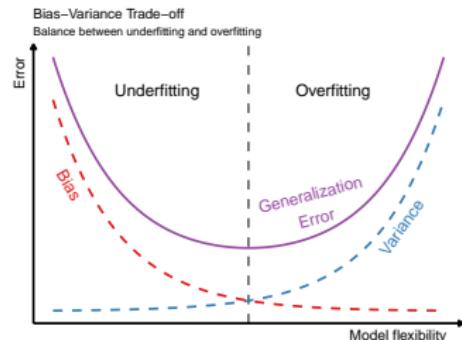
- ▶ Software like R, Stata, or Python statsmodels gives a full matrix of DFBETAs: each observation i and coefficient j .
- ▶ These can be **aggregated or filtered** to diagnose robustness:
 - ▶ Identify which units, years, or clusters strongly affect a specific coefficient.
 - ▶ Compute **average absolute DFBETA** by group (region, industry, firm, etc.) to find influential clusters.
 - ▶ **Visual cue:** A **histogram of DFBETAs** for the coefficient of interest shows how influence is distributed across observations whether most points are small and balanced, or a few dominate the estimate.
- ▶ **Example application:** In a difference-in-differences regression, highlight units where $DFBETA_{i,treat \times post}$ is large.

8.4: Specification Choice: Information Criteria and Penalized Regression

Model Fit vs. Complexity: The Bias–Variance Tradeoff

- ▶ Adding regressors always increases in-sample fit ($R^2 \uparrow, SSR \downarrow$).
- ▶ But more flexibility \Rightarrow higher estimation variance
- ▶ The **expected out-of-sample error** decomposes into:

$$E[(y - \hat{y})^2] = \text{Bias}^2 + \text{Variance} + \text{Irreducible Noise}$$



As model flexibility increases:

Bias \downarrow but Variance \uparrow

The minimum of total (generalization) error gives the **optimal model complexity**.

- ▶ The log-likelihood $\ell = \log L(\hat{\theta})$ measures in-sample fit.
- ▶ Adding parameters **always increases** ℓ – even if we only fit noise.
- ▶ **Information criteria** correct this by adding a penalty for model complexity:

$$\text{IC} = -2\ell + \text{penalty}(k, n)$$

- ▶ Common forms:

$$\text{AIC} = -2\ell + 2k, \quad \text{BIC} = -2\ell + k \ln n$$

- ▶ Choose the model with the **lowest IC**.

Intuition

- ▶ **AIC**: smaller penalty \Rightarrow favors better prediction.
- ▶ **BIC**: stronger penalty \Rightarrow favors simpler models.

Penalized Regression: Controlling Complexity Directly

- ▶ Recall OLS in matrix form:

$$\hat{\beta}_{\text{OLS}} = \underset{\beta}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta).$$

- ▶ Penalized regression adds a constraint on coefficient magnitude:

$$\hat{\beta}_{\lambda} = \underset{\beta}{\operatorname{argmin}} \left[(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta) + \lambda P(\beta) \right],$$

where $\lambda \geq 0$ controls how strongly we penalize complexity.

- ▶ Examples of penalty functions:

$$P(\beta) = \begin{cases} \sum_j \beta_j^2 & \text{(Ridge)} \\ \sum_j |\beta_j| & \text{(LASSO)} \end{cases}$$

- ▶ Larger $\lambda \Rightarrow$ simpler model, smaller coefficients.

Bias-Variance Logic of Penalization

- ▶ The penalty **shrinks** coefficients toward zero. This **reduces variance** at the cost of introducing some **bias**.

$$E[\hat{\beta}_\lambda] \neq \beta_0 \quad \text{but} \quad \text{var}(\hat{\beta}_\lambda) \ll \text{var}(\hat{\beta}_{\text{OLS}})$$

- ▶ When prediction is the goal, a small bias can be optimal if it cuts variance substantially.
- ▶ Intuitively:

Shrink noisy slopes slightly \Rightarrow lower mean-squared error overall

- ▶ The penalty strength λ determines where we sit on the bias-variance curve.
- ▶ In practice, we **choose λ by cross-validation**: fit the model on subsamples, test on held-out data, and pick the λ with the smallest average prediction error.

- ▶ Most software (`glmnet`, `sklearn`, `Stata cvlasso`, `tidymodels`) automatically **cross-validate** λ :
 1. Split data into folds (e.g. 10-fold CV),
 2. Estimate the model on training folds,
 3. Compute out-of-sample fit on validation folds,
 4. Pick λ that minimizes average prediction error.
- ▶ LASSO can set some coefficients exactly to zero \Rightarrow automatic variable selection.
- ▶ But LASSO estimates are **biased** because of the shrinkage term.
- ▶ Hence, after variable selection, economists often estimate:

$$\hat{\beta}_{\text{post-LASSO}} = \underset{\beta}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X}_{\text{selected}}\beta)'(\mathbf{y} - \mathbf{X}_{\text{selected}}\beta).$$

- ▶ **Post-LASSO:** Re-estimate OLS on the selected variables to remove shrinkage bias.

Statistical Selection vs. Economic Theory

- ▶ Economists are often cautious about purely statistical model selection.
- ▶ LASSO is powerful when:
 - ▶ we have many potential controls,
 - ▶ but the focus is on the main regressor(s), not each control's interpretation.
- ▶ Always cross-check results with:
 - ▶ domain knowledge
 - ▶ theory-based restrictions
 - ▶ robustness to alternative control sets

In short:

Use LASSO to narrow down; use economics to decide what makes sense.

Application: Double Selection

- ▶ In causal inference, we are often interested in a single regressor of interest d_i :

$$y_i = \alpha d_i + x_i' \beta + \varepsilon_i$$

where x_i are many potential controls.

- ▶ A simple LASSO for the outcome regression may omit controls that are weakly related to y_i but strongly related to d_i .
- ▶ Omitted variables correlated with $d_i \Rightarrow$ bias in $\hat{\alpha}$.
- ▶ **Idea:** Run two selection steps:
 1. Regress y_i on all x_i with LASSO to select controls related to y .
 2. Regress d_i on all x_i with LASSO to select controls related to d .
- ▶ Take the **union** of both selected variable sets, and estimate α by OLS controlling for them.

Belloni, A., Chernozhukov, V., & Hansen, C. (2014). "Inference on Treatment Effects after Selection among High-Dimensional Controls." *Review of Economic Studies*, 81(2), 608–650.

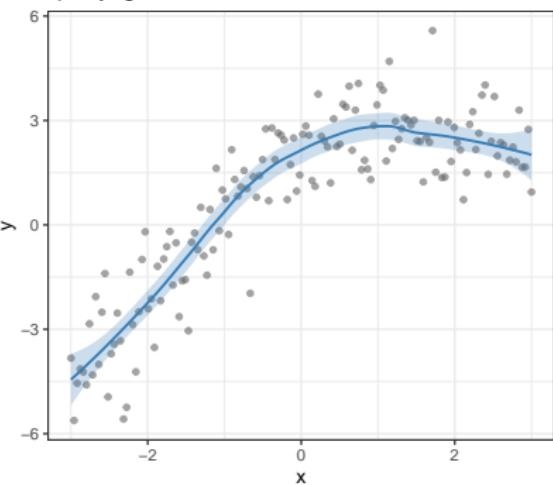
8.5: Local Linear Regressions

Smooth Fits You Already Know: `geom_smooth()`

- ▶ `geom_smooth()` in `ggplot2` uses **LOESS** by default, a local regression that adapts to the data's shape.
- ▶ It provides a quick, nonparametric way to visualize nonlinear relationships:

$$y_i = f(x_i) + \varepsilon_i, \\ f(\cdot) \text{ estimated locally.}$$

`ggplot's geom_smooth() as a Nonparametric Fit`
LOESS captures curvature without specifying a functional form



Useful for exploration and pattern recognition, but:

- ▶ The fitted shape depends on a bandwidth
- ▶ **No interpretable parameters!**
- ▶ Unstable at data boundaries

Interactive Illustration: Local Smooths in Action

Shiny-App on how LOESS fits work

Inside a Nonparametric Smoother: The Big Picture

Goal: Estimate a smooth function $f(x)$ without imposing a specific parametric form.

For each target point x_0 :

1. Assign weights $w_i = K\left(\frac{x_i - x_0}{h}\right)$ to nearby observations.
2. Fit a simple model (often linear) using these weighted observations.
3. Move x_0 across the range of x and repeat to obtain $\hat{f}(x)$.

Key ingredients:

- ▶ The **kernel** $K(\cdot)$ decides how fast weights decline with distance.
- ▶ The **bandwidth** h controls how wide the local neighborhood is.

Result: A smooth, flexible fit that adapts to the local structure of the data.

Kernels: How Local Weights Are Assigned

The **kernel function** $K(u)$ determines how much weight each observation receives based on distance

$$u = \frac{x_i - x_0}{h}$$

where h is the bandwidth (smoothing parameter).

$$K(u) \geq 0, \quad K(u) = K(-u), \quad \int K(u) du = 1$$

Intuition: Nearby points get high weights; distant points get low or zero weight.

Common kernel shapes:

Name	Kernel function $K(u)$
Uniform	$\frac{1}{2} \mathbb{1}(u \leq 1)$ (equal weights within window)
Triangular	$(1 - u) \mathbb{1}(u \leq 1)$ (linearly decreasing weights)
Epanechnikov	$\frac{3}{4}(1 - u^2) \mathbb{1}(u \leq 1)$ (optimal in MSE sense)
Gaussian	$\frac{1}{\sqrt{2\pi}} e^{-u^2/2}$ (smooth, infinite support)

In practice: The kernel shape matters little. Most of the smoothing behavior is driven by the bandwidth h .

Bandwidth: The Smoothing Parameter

- ▶ The **bandwidth** $h > 0$ defines the size of the local neighborhood:

$$w_i = K\left(\frac{x_i - x_0}{h}\right)$$

- ▶ Smaller $h \Rightarrow$ more local fit:
 - ▶ captures fine detail (low bias),
 - ▶ but higher variance (less data per fit).
- ▶ Larger $h \Rightarrow$ smoother fit:
 - ▶ lower variance,
 - ▶ but higher bias (averages distant points).

Bias–Variance Tradeoff in Local Regression

- ▶ The bandwidth h controls how smooth the local fit is.

$$\hat{f}(x) = \sum_i w_i(x) y_i, \quad w_i(x) \propto K\left(\frac{x_i - x}{h}\right)$$

- ▶ Small $h \Rightarrow$ low bias, high variance (wiggly fit)
- ▶ Large $h \Rightarrow$ high bias, low variance (over-smoothed)
- ▶ **Exactly the same bias–variance tradeoff as in prediction:** choosing h balances flexibility and stability.

Why Nonparametrics Are Rare in Economics

In theory: Nonparametric methods make minimal assumptions about functional form.

$$y_i = f(x_i) + \varepsilon_i, \quad f(\cdot) \text{ estimated flexibly.}$$

In practice: Economists rarely use fully nonparametric estimators because:

- ▶ **Curse of dimensionality:** Precision declines exponentially with the number of regressors.

$$n_{\text{effective}} \approx n \cdot h^k \quad \Rightarrow \quad \text{requires huge samples if } k > 2$$

- ▶ **No structural interpretation:** Nonparametric fits show patterns, not mechanisms or parameters.
- ▶ **Difficult inference:** Confidence intervals and hypothesis testing are less straightforward.
- ▶ **Economists prefer interpretable, theory-consistent parameters.**

Therefore: Nonparametrics are mainly used for visualization, validation, or specific designs (e.g. RDD).

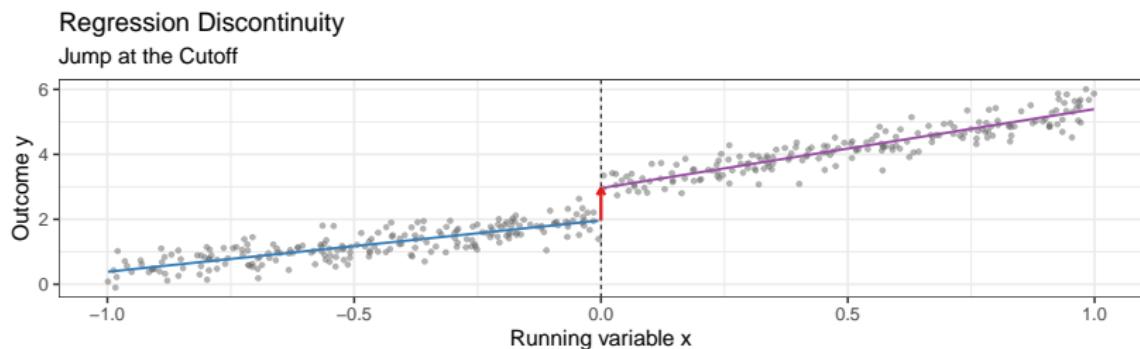
Application: RDD

Regression Discontinuity Designs: A treatment switches on when running variable x crosses a known cutoff c (Here $c = 0$).

$$D_i = \mathbb{1}(x_i \geq c)$$

If potential outcomes are smooth in x , any jump in y at c identifies the treatment effect:

$$\tau = \lim_{x \downarrow c} E[y|x] - \lim_{x \uparrow c} E[y|x]$$



Idea: Compare observations just left vs. right of the cutoff. Similar units, different treatment.

Application: Local Linear Regression in RDD

Implementation: Fit separate local linear regressions on each side of the cutoff c :

$$y_i = \alpha_{\text{below}} + \beta_{\text{below}}(x_i - c) + \varepsilon_i, \quad x_i < c,$$

$$y_i = \alpha_{\text{above}} + \beta_{\text{above}}(x_i - c) + \varepsilon_i, \quad x_i \geq c.$$

Each weighted by a kernel $K\left(\frac{x_i - c}{h}\right)$ emphasizing observations near c :

$$\min_{\alpha_{\text{below}}, \beta_{\text{below}}} \sum_{i: x_i < c} K\left(\frac{x_i - c}{h}\right) (y_i - \alpha_{\text{below}} - \beta_{\text{below}}(x_i - c))^2,$$

$$\min_{\alpha_{\text{above}}, \beta_{\text{above}}} \sum_{i: x_i \geq c} K\left(\frac{x_i - c}{h}\right) (y_i - \alpha_{\text{above}} - \beta_{\text{above}}(x_i - c))^2.$$

The estimated discontinuity:

$$\hat{\tau} = \hat{\alpha}_{\text{above}} - \hat{\alpha}_{\text{below}}$$

Interpretation: $\hat{\tau}$ measures the difference in the fitted lines at $x = c$.

8.6: Beyond the Mean: Quantile and RIF Regressions

Why Go Beyond the Mean?

- ▶ OLS estimates the effect of x on the **conditional mean** $E[y|x]$.
- ▶ But economic effects can differ across the outcome distribution:
Wage returns to education, treatment effects, inequality changes.
- ▶ Quantile regression allows heterogeneity:

$$Q_\tau(y|x) = x'\beta_\tau, \quad \text{for } \tau \in (0, 1)$$

- ▶ Each β_τ describes the marginal effect of x at quantile τ , e.g. "effect on the 10th vs. 90th percentile".
- ▶ Insight: Policies may compress or stretch the distribution, not just shift its mean.

Quantile Regression: Intuition

- ▶ OLS finds the line that makes the **average residual** zero:

$$\mathbf{E}[\varepsilon_i | x_i] = 0 \quad \Rightarrow \quad \text{best fit for the mean of } y|x.$$

- ▶ Quantile regression instead finds the line that makes, say, **half the residuals positive and half negative**:

$$\mathbf{E}[\mathbb{1}\{\varepsilon_i < 0\} | x_i] = \tau \quad \Rightarrow \quad \text{best fit for the } \tau\text{-quantile of } y|x.$$

- ▶ For $\tau = 0.5$ this gives the conditional median; for $\tau = 0.9$ it fits the 90th percentile, and so on.
- ▶ Same idea as OLS, but instead of “best fit for the mean,” it’s the “best fit for a chosen part of the distribution.”

Interpreting Quantile Regressions

- ▶ Each β_τ shows how x shifts the τ -quantile of $y|x$:

$$Q_\tau(y|x+1) - Q_\tau(y|x)$$

- ▶ Differences across τ reveal **heterogeneous effects**:
 - ▶ Education may raise wages mainly at the top quantiles.
 - ▶ Minimum wages affect the lower tail more strongly.
- ▶ Plotting β_τ against τ shows how effects vary across the outcome distribution.
- ▶ Note that, these are **conditional** quantiles. They describe how x affects the distribution **given** covariates!

RIF-Regression: Effects on Unconditional Quantiles

- ▶ Quantile regression: effect on **conditional** quantiles $Q_\tau(y|x)$.
- ▶ Often we care about how x shifts the **unconditional** distribution, e.g. the overall 10th or 90th percentile

Idea (Firpo, Fortin & Lemieux, 2009): Use the **Recentered Influence Function (RIF)** of a statistic v (such as a quantile).

$$\text{RIF}(y_i; v) = v + \text{IF}(y_i; v)$$

- ▶ Each observation's RIF shows how it influences the statistic v .
- ▶ Key property: $E[\text{RIF}(y_i; v)] = v$
- ▶ **Common Use:** Regress the RIF on covariates:

$$E[\text{RIF}(y_i; v) \mid x_i] = x_i' \beta_v$$

- ▶ β_v shows how x_i affects the **unconditional quantile** (or other statistic)