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8.1: Nonlinearities within OLS



Review: Linear in Parameters ̸= Linear in Variables

▶ OLS assumes the model is linear in parameters, not
necessarily in variables.

yi = β0 + β1xi + β2x2i + εi

is still a linear regression model.

▶ The conditional mean function E[y|X] can be nonlinear in x.

“Linear” ⇒ additive in β, not necessarily in x.

▶ Nonlinearities in variables allow marginal effects to vary
with x.

∂y
∂x

= β1 + 2β2x
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Marginal Effects that Depend on x

▶ In a linear model, ∂y/∂x = β is constant.
▶ In a nonlinear function of x, the slope changes:

yi = β0 + β1xi + β2x2i + εi

⇒ ∂y
∂x

= β1 + 2β2x

▶ Interpretation:
▶ β2 > 0: increasing effect of x.
▶ β2 < 0: diminishing returns.

▶ Visual check: plot ŷ(x) or dŷ
dx .
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Illustration: Marginal Effect for a Quadratic Function

Fitted relationship Marginal effect
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Quadratic Model and Marginal Effects
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Polynomial Models

▶ General form:

yi = β0 + β1xi + β2x2i + · · ·+ βrxri + εi

▶ Captures curvature in E[y|x] while remaining linear in β.
▶ Choose degree r:

▶ Sequential F-tests for higher-order terms.
▶ Information criteria (AIC, BIC) for fit vs. complexity.
▶ Or choose via LASSO-regression (more later)

▶ Watch out for:
▶ Extrapolation instability at high degrees.
▶ Multicollinearity among xj terms.

5 / 46



Illustration: Beware of High-Degree Polynomials
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Dummy Variables
▶ A dummy variable (or indicator) takes values 0 or 1 to represent

categories:

Di =

{
1 if observation i belongs to group A
0 otherwise.

▶ Model with one dummy:

yi = β0 + β1Di + εi

▶ Interpretation:

E[y|D = 1]−E[y|D = 0] = β1 ⇒ β1 = mean difference between groups.

▶ You can one-hot encode multiple categories this way, but you must omit
one base category to avoid perfect collinearity (“dummy variable trap”).

yi = β0 + β1D1i + β2D2i + · · ·+ εi

▶ Interactions allow slope differences by group:

yi = β0 + β1xi + β2Di + β3(xi × Di) + εi
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Interaction Terms

▶ Allow the effect of one regressor to depend on another.

yi = β0 + β1xi + β2zi + β3(xi × zi) + εi

▶ Marginal effect of x:

∂y
∂x

= β1 + β3z

▶ Examples:
▶ Gender differences in wage returns to education.
▶ Policy effect only active in treated regions.

▶ Always include base levels of zi and xi for if you are
interested in an interaction term!
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Interactions with Dummy Variables
Interacting a continuous variable xi with a dummy Di allows for
group-specific slopes.

yi = β0 + β1xi + β2Di + β3(xi × Di) + εi

The model implies two regression lines:

E[y | D] =

{
β0 + β1x, if D = 0,

(β0 + β2) + (β1 + β3)x, if D = 1.

Interpretation:
▶ β2: difference in intercepts between groups (x = 0).
▶ β3: difference in slopes between groups — how the effect of x changes

when D = 1.
Graphically:

Parallel lines if β3 = 0, different slopes if β3 ̸= 0.

Example:
▶ Wage regression with x = years of education and D = female.
▶ β3 < 0: smaller returns to education for women.
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Why Logarithmic Transformations?

▶ Many economic relationships are multiplicative rather than
additive:

y = Axβeε

▶ Taking logs makes this relationship additive:

ln y = lnA+ β ln x+ ε

▶ Now, β approximates how y changes in percentage terms
when x changes in percentage terms.

▶ Intuition:

A 1% increase in x ⇒ about a β% change in y
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Why the Log Approximation Works
▶ We want to understand why a change in the log of x measures a

percentage change in x.

∆ ln x = ln(x+∆x)− ln(x) = ln
(
1 +

∆x
x

)
▶ Let z = ∆x

x = the relative (percentage) change in x.
▶ Expand ln(1 + z) around z = 0 (using a Taylor series):

ln(1 + z) = z− z2

2
+

z3

3
− . . .

▶ When z is small (say a few percent), the higher-order terms are
negligible:

ln(1 + z) ≈ z
▶ Therefore:

∆ ln x = ln(x+∆x)− ln(x) ≈ ∆x
x

▶ So a small percentage change in x produces roughly the same
change in log(x).
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Log Models and Interpretation

▶ Using the approximation:

Linear–log: y = β0 + β1 ln x+ ε ⇒ ∆y
∆x/x

≈ 0.01β1 (semi-elasticity)

Log–linear: ln y = β0 + β1x+ ε ⇒ ∆y/y
∆x

≈ β1 (semi-elasticity)

Log–log: ln y = β0 + β1 ln x+ ε ⇒ ∆y/y
∆x/x

≈ β1 (elasticity)

▶ The log transformation thus links linear regression coefficients to
interpretable economic quantities (percent or proportional effects).
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How Accurate is the Log Approximation?
Recall:

ln(1 + z) ≈ z for small z =
∆x
x

.

▶ Compare the exact and approximate values:

Relative change z ln(1 + z) Approx. z Error (%)

0.01 0.00995 0.01000 0.5%
0.05 0.04879 0.05000 2.5%
0.10 0.09531 0.10000 4.9%
0.25 0.22314 0.25000 12.1%
0.50 0.40547 0.50000 23.3%
1.00 0.69315 1.00000 44.3%

▶ The approximation is very accurate for small relative changes (say
below 10%), but deteriorates for larger ones.

▶ Visually: ln(1 + z) bends below the 45◦ line as z grows.
Rule of thumb:

Use the log approximation only for |∆x/x| ≲ 0.1.

Alternatively, economists often report log points directly instead of
percentage points to avoid this approximation issue.
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Illustration: Accuracy of the Log-Approximation

Approximation: z
Exact: ln(1+z)
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8.2: Polynomial Models



Functional Form and Economic Theory
Before relying on statistical tests, start from economic theory.
▶ Theory suggests shape restrictions: monotonicity, concavity,

saturation, thresholds, etc.
▶ Example: diminishing returns ⇒ negative second derivative

(β2 < 0).
▶ Utility, production, or demand functions often imply specific

curvature.

Polynomials can be a flexible approximation to such theoretical
shapes:

f(x) ≈ β0 + β1x+ β2x2 + · · ·+ βrxr

▶ But without theory, higher-degree terms risk capturing noise, not
structure.

▶ Therefore:
1. Use theory to motivate the expected shape of E[y|x].
2. Use statistical tests (e.g., sequential F-tests) only to check

adequacy of that shape.
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Sequential F-Tests for Polynomial Terms

▶ To decide whether to include higher-order terms, test:

H0 : βr = 0 vs. H1 : βr ̸= 0

▶ More generally:
H0 : βq+1 = · · · = βr = 0

▶ Compute the F-statistic comparing restricted (degree q) and
unrestricted (degree r) models:

F =
(SSRR − SSRU)/(r− q)

SSRU/(n− r− 1)

▶ If F > Fr−q, n−r−1;1−α, reject H0 −→ higher-degree terms improve
fit.

▶ Repeat sequentially: degree 1 → 2 → 3 → . . . until H0 not
rejected.
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Example: Choosing Polynomial Degree

Fit models of increasing degree:

yi = β0 + β1xi + εi

yi = β0 + β1xi + β2x2i + εi

yi = β0 + β1xi + β2x2i + β3x3i + εi

and so on.

▶ Use the F-test to compare models, e.g.:

F2 vs. 3 =
(SSR2 − SSR3)/1

SSR3/(n− 4)

▶ Stop adding terms when F-test is insignificant.

Important: Always include all lower-order terms when testing a
higher-order one.
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Model Fit vs. Complexity

▶ Higher-degree polynomials improve fit in-sample ()R2 ↑), but may
overfit.

▶ Sequential F-tests guard against adding unnecessary terms, but:
▶ Depend on chosen α (risk of multiple testing).
▶ Are not ideal for predictive performance.

▶ Alternative: use information criteria like AIC/BIC to penalize
complexity (more on them later).
→ Choose model with minimal BIC/AIC
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Illustration: Polynomial Choice
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8.3 Confidence Intervals and Leverage



Confidence Bands in Practice
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Confidence Intervals Widen Away from the Center

Example: Fitted line for the mtcars data. Confidence bands widen at
the edges even though residual variance is constant.

Question: Why?
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Variance of ŷ0
Start from the linear model:

y = Xβ + ε, E[ε] = 0, var(ε) = σ2In.

The OLS estimator is:

β̂ = (X′X)−1X′y = β + (X′X)−1X′ε.

The fitted value at a new point x0 is:

ŷ0 = x′0β̂ = x′0β + x′0(X′X)−1X′ε.

Take expectations, using E[ε|X] = 0:

E[ŷ0] = E
[

E[ŷ0 | X]
]

= E
[

E
[
x′0(X′X)−1X′(Xβ + ε)

∣∣X]]
= E

[
x′0β + x′0(X′X)−1X′ E[ε | X]

]
= E[x′0β] = x′0β due to Exogeneity E[ε | X] = 0
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Variance of ŷ0
Subtract the mean and use var(a′Z) = a′ var(Z)a:

var(ŷ0) = var
(
x′0(X′X)−1X′ε

)
= x′0(X′X)−1X′ var(ε)X(X′X)−1x0.

Substitute var(ε) = σ2In:

var(ŷ0) = σ2x′0(X′X)−1X′X(X′X)−1x0.

Simplify X′X in the middle:

var(ŷ0) = σ2x′0(X′X)−1x0.

Interpretation:
▶ The term x′0(X′X)−1x0 measures how far the point x0 is from the

center of the data cloud, taking into account how the data are
spread and correlated.

▶ In geometry, this acts like a stretch-adjusted squared distance
(the Mahalanobis distance)

▶ So, predictions made far from where most data lie have larger
distance and therefore larger variance.
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Example: Variance in a Bivariate Regression
For a bivariate model: yi = β0 + β1xi + εi
Then

X =

1 x1
...

...
1 xn

 , X′X =

[
n

∑
xi∑

xi
∑

x2i

]
.

Invert:
(X′X)−1 =

1

n
∑

(xi − x̄)2

[ ∑
x2i −

∑
xi

−
∑

xi n

]
.

Plug into var(ŷ0) = σ2x′0(X′X)−1x0, where x0 = (1, x0)′:

var(ŷ0) =
σ2

n
∑

(xi − x̄)2
[∑

x2i − 2x0
∑

xi + nx20
]

= σ2

[
1

n
+

(x0 − x̄)2∑
(xi − x̄)2

]
.

Interpretation: The variance is smallest at x0 = x̄ (the sample center)
and grows quadratically as x0 moves away. This is why predictions at
the edges have high uncertainty.
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Leverage

The quantity
h0 = x′0(X′X)−1x0

is known as the leverage of point x0.

▶ Leverage measures how far x0 is from the center of the data in
feature space.

▶ Observations (or prediction points) with high leverage have
greater influence on the fitted line.

▶ The variance of the fitted value is proportional to leverage

▶ We can compute leverage for every observation to gain insights
if there are any points that are very influential for our fit.
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Influence on Coefficients: DFBETA

▶ Leverage is informative for an observations influence on the
fitted line. But this does not mean a high-leverage point
necessarily affects our coefficient of interest.

▶ DFBETA measures the actual impact of each observation on
each estimated coefficient:

DFBETAij = change in β̂j when observation i is removed.

▶ Intuition:
▶ If one data point can noticeably shift a slope or intercept, its

DFBETA will be large (positive or negative).
▶ A DFBETA close to zero means the observation does not

matter much for that coefficient.

▶ Rule of thumb: |DFBETAij| > 2/
√
n indicates influential points.
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Aggregating DFBETAs for Robustness and Diagnostics

▶ Software like R, Stata, or Python statsmodels gives a full
matrix of DFBETAs: each observation i and coefficient j.

▶ These can be aggregated or filtered to diagnose robustness:
▶ Identify which units, years, or clusters strongly affect a

specific coefficient.
▶ Compute average absolute DFBETA by group (region,

industry, firm, etc.) to find influential clusters.
▶ Visual cue: A histogram of DFBETAs for the coefficient of

interest shows how influence is distributed across
observations whether most points are small and balanced,
or a few dominate the estimate.

▶ Example application: In a difference-in-differences regression,
highlight units where DFBETAi,treat×post is large.

26 / 46



8.4: Specification Choice: Information Criteria
and Penalized Regression



Model Fit vs. Complexity: The Bias–Variance Tradeoff

▶ Adding regressors always increases
in-sample fit (R2 ↑, SSR ↓).

▶ But more flexibility ⇒ higher
estimation variance

▶ The expected out-of-sample error
decomposes into:

E[(y−ŷ)2] = Bias2+Variance+Irreducible Noise

Bias

Generalization

Error

Va
ria

nc
e

Underfitting Overfitting

Model flexibility

E
rr

or

Balance between underfitting and overfitting

Bias−Variance Trade−off

As model flexibility increases:

Bias ↓ but Variance ↑

The minimum of total (generalization) error gives the optimal model
complexity.
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Penalizing Flexibility: The Idea Behind Information Criteria

▶ The log-likelihood ℓ = log L(θ̂) measures in-sample fit.
▶ Adding parameters always increases ℓ — even if we only fit

noise.
▶ Information criteria correct this by adding a penalty for model

complexity:
IC = −2ℓ+ penalty(k, n)

▶ Common forms:

AIC = −2ℓ+ 2k, BIC = −2ℓ+ k ln n

▶ Choose the model with the lowest IC.

Intuition

▶ AIC: smaller penalty ⇒ favors better prediction.

▶ BIC: stronger penalty ⇒ favors simpler models.
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Penalized Regression: Controlling Complexity Directly

▶ Recall OLS in matrix form:

β̂OLS = argmin
β

(y − Xβ)′(y − Xβ).

▶ Penalized regression adds a constraint on coefficient magnitude:

β̂λ = argmin
β

[
(y − Xβ)′(y − Xβ) + λP(β)

]
,

where λ ≥ 0 controls how strongly we penalize complexity.

▶ Examples of penalty functions:

P(β) =

{∑
j β

2
j (Ridge)∑

j |βj| (LASSO)

▶ Larger λ⇒ simpler model, smaller coefficients.

29 / 46



Bias-Variance Logic of Penalization

▶ The penalty shrinks coefficients toward zero. This reduces
variance at the cost of introducing some bias.

E[β̂λ] ̸= β0 but var(β̂λ) ≪ var(β̂OLS)

▶ When prediction is the goal, a small bias can be optimal if it cuts
variance substantially.

▶ Intuitively:

Shrink noisy slopes slightly ⇒ lower mean-squared error overall

▶ The penalty strength λ determines where we sit on the
bias–variance curve.

▶ In practice, we choose λ by cross-validation: fit the model on
subsamples, test on held-out data, and pick the λ with the
smallest average prediction error.
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Implementation: Cross-Validation and Post-LASSO

▶ Most software (glmnet, sklearn, Stata cvlasso, tidymodels)
automatically cross-validate λ:

1. Split data into folds (e.g. 10-fold CV),
2. Estimate the model on training folds,
3. Compute out-of-sample fit on validation folds,
4. Pick λ that minimizes average prediction error.

▶ LASSO can set some coefficients exactly to zero ⇒ automatic
variable selection.

▶ But LASSO estimates are biased because of the shrinkage term.

▶ Hence, after variable selection, economists often estimate:

β̂post-LASSO = argmin
β

(y − Xselectedβ)
′(y − Xselectedβ).

▶ Post-LASSO: Re-estimate OLS on the selected variables to
remove shrinkage bias.
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Statistical Selection vs. Economic Theory

▶ Economists are often cautious about purely statistical model
selection.

▶ LASSO is powerful when:
▶ we have many potential controls,
▶ but the focus is on the main regressor(s), not each control’s

interpretation.

▶ Always cross-check results with:
▶ domain knowledge
▶ theory-based restrictions
▶ robustness to alternative control sets

In short:

Use LASSO to narrow down; use economics to decide what makes sense.

32 / 46



Application: Double Selection

▶ In causal inference, we are often interested in a single regressor
of interest di:

yi = αdi + x′iβ + εi

where xi are many potential controls.

▶ A simple LASSO for the outcome regression may omit controls
that are weakly related to yi but strongly related to di.

▶ Omitted variables correlated with di ⇒ bias in α̂.

▶ Idea: Run two selection steps:
1. Regress yi on all xi with LASSO to select controls related to y.
2. Regress di on all xi with LASSO to select controls related to d.

▶ Take the union of both selected variable sets, and estimate α by
OLS controlling for them.

Belloni, A., Chernozhukov, V., & Hansen, C. (2014). ”Inference on Treatment Effects after
Selection among High-Dimensional Controls.” Review of Economic Studies, 81(2),
608–650.
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8.5: Local Linear Regressions



Smooth Fits You Already Know: geom_smooth()

▶ geom_smooth() in ggplot2
uses LOESS by default, a
local regression that adapts
to the data’s shape.

▶ It provides a quick,
nonparametric way to
visualize nonlinear
relationships:

yi = f(xi) + εi,

f(·) estimated locally.
−6
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0

3

6

−2 0 2
x

y

LOESS captures curvature without
specifying a functional form

ggplot's geom_smooth() as a Nonparametric Fit

Useful for exploration and pattern recognition, but:
▶ The fitted shape depends on a bandwidth
▶ No interpretable parameters!
▶ Unstable at data boundaries
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Interactive Illustration: Local Smooths in Action

Shiny-App on how LOESS fits work
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Inside a Nonparametric Smoother: The Big Picture

Goal: Estimate a smooth function f(x) without imposing a specific
parametric form.

For each target point x0:

1. Assign weights wi = K
( xi−x0

h
)
to nearby observations.

2. Fit a simple model (often linear) using these weighted
observations.

3. Move x0 across the range of x and repeat to obtain f̂(x).

Key ingredients:

▶ The kernel K(·) decides how fast weights decline with distance.

▶ The bandwidth h controls how wide the local neighborhood is.

Result: A smooth, flexible fit that adapts to the local structure of the
data.
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Kernels: How Local Weights Are Assigned
The kernel function K(u) determines how much weight each observation
receives based on distance

u =
xi − x0

h
where h is the bandwidth (smoothing parameter).

K(u) ≥ 0, K(u) = K(−u),
∫

K(u) du = 1

Intuition: Nearby points get high weights; distant points get low or zero
weight.
Common kernel shapes:

Name Kernel function K(u)

Uniform 1
2
1(|u| ≤ 1) (equal weights within window)

Triangular (1− |u|)1(|u| ≤ 1) (linearly decreasing weights)
Epanechnikov 3

4
(1− u2)1(|u| ≤ 1) (optimal in MSE sense)

Gaussian 1√
2π

e−u2/2 (smooth, infinite support)

In practice: The kernel shape matters little. Most of the smoothing behavior
is driven by the bandwidth h.
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Bandwidth: The Smoothing Parameter

▶ The bandwidth h > 0 defines the size of the local neighborhood:

wi = K
(
xi − x0

h

)
▶ Smaller h ⇒ more local fit:

▶ captures fine detail (low bias),
▶ but higher variance (less data per fit).

▶ Larger h ⇒ smoother fit:
▶ lower variance,
▶ but higher bias (averages distant points).
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Bias–Variance Tradeoff in Local Regression

▶ The bandwidth h controls how smooth the local fit is.

f̂(x) =
∑

i

wi(x) yi, wi(x) ∝ K
(
xi − x

h

)

▶ Small h ⇒ low bias, high variance (wiggly fit)

▶ Large h ⇒ high bias, low variance (over-smoothed)

▶ Exactly the same bias–variance tradeoff as in prediction:
choosing h balances flexibility and stability.
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Why Nonparametrics Are Rare in Economics
In theory: Nonparametric methods make minimal assumptions about
functional form.

yi = f(xi) + εi, f(·) estimated flexibly.

In practice: Economists rarely use fully nonparametric estimators
because:

▶ Curse of dimensionality: Precision declines exponentially with
the number of regressors.

neffective ≈ n · hk ⇒ requires huge samples if k > 2

▶ No structural interpretation: Nonparametric fits show patterns,
not mechanisms or parameters.

▶ Difficult inference: Confidence intervals and hypothesis testing
are less straightforward.

▶ Economists prefer interpretable, theory-consistent parameters.

Therefore: Nonparametrics are mainly used for visualization,
validation, or specific designs (e.g. RDD).
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Application: RDD
Regression Discontinuity Designs: A treatment switches on when
running variable x crosses a known cutoff c (Here c = 0).

Di = 1(xi ≥ c)

If potential outcomes are smooth in x, any jump in y at c identifies the
treatment effect:

τ = lim
x↓c

E[y|x]− lim
x↑c

E[y|x]

0

2

4

6

−1.0 −0.5 0.0 0.5 1.0
Running variable x

O
ut
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m
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y

Jump at the Cutoff

Regression Discontinuity

Idea: Compare observations just left vs. right of the cutoff. Similar
units, different treatment.
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Application: Local Linear Regression in RDD
Implementation: Fit separate local linear regressions on each side of
the cutoff c:

yi = αbelow + βbelow(xi − c) + εi, xi < c,

yi = αabove + βabove(xi − c) + εi, xi ≥ c.

Each weighted by a kernel K
( xi−c

h
)
emphasizing observations near c:

min
αbelow,βbelow

∑
i:xi<c

K
(
xi − c

h

)
(yi − αbelow − βbelow(xi − c))2,

min
αabove,βabove

∑
i:xi≥c

K
(
xi − c

h

)
(yi − αabove − βabove(xi − c))2.

The estimated discontinuity:

τ̂ = α̂above − α̂below

Interpretation: τ̂ measures the difference in the fitted lines at x = c.
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8.6: Beyond the Mean: Quantile and RIF
Regressions



Why Go Beyond the Mean?

▶ OLS estimates the effect of x on the conditional mean E[y|x].
▶ But economic effects can differ across the outcome distribution:

Wage returns to education, treatment effects, inequality changes.

▶ Quantile regression allows heterogeneity:

Qτ (y|x) = x′βτ , for τ ∈ (0, 1)

▶ Each βτ describes the marginal effect of x at quantile τ , e.g.
“effect on the 10th vs. 90th percentile”.

▶ Insight: Policies may compress or stretch the distribution, not
just shift its mean.
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Quantile Regression: Intuition

▶ OLS finds the line that makes the average residual zero:

E[εi|xi] = 0 ⇒ best fit for the mean of y|x.

▶ Quantile regression instead finds the line that makes, say, half
the residuals positive and half negative:

E[1{εi < 0}|xi] = τ ⇒ best fit for the τ -quantile of y|x.

▶ For τ = 0.5 this gives the conditional median; for τ = 0.9 it fits
the 90th percentile, and so on.

▶ Same idea as OLS, but instead of “best fit for the mean,” it’s the
“best fit for a chosen part of the distribution.”
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Interpreting Quantile Regressions

▶ Each βτ shows how x shifts the τ -quantile of y|x:

Qτ (y|x+1)− Qτ (y|x)

▶ Differences across τ reveal heterogeneous effects:
▶ Education may raise wages mainly at the top quantiles.
▶ Minimum wages affect the lower tail more strongly.

▶ Plotting βτ against τ shows how effects vary across the
outcome distribution.

▶ Note that, these are conditional quantiles. They describe how x
affects the distribution given covariates!
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RIF-Regression: Effects on Unconditional Quantiles

▶ Quantile regression: effect on conditional quantiles Qτ (y|x).
▶ Often we care about how x shifts the unconditional distribution,

e.g. the overall 10th or 90th percentile

Idea (Firpo, Fortin & Lemieux, 2009): Use the Recentered Influence
Function (RIF) of a statistic v (such as a quantile).

RIF(yi; v) = v+ IF(yi; v)

▶ Each observation’s RIF shows how it influences the statistic v.
▶ Key property: E[RIF(yi; v)] = v
▶ Common Use: Regress the RIF on covariates:

E[RIF(yi; v) | xi] = x′iβv

▶ βv shows how xi affects the unconditional quantile (or other
statistic)
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