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8.1: Nonlinearities within OLS




Review: Linear in Parameters # Linear in Variables

» OLS assumes the model is linear in parameters, not
necessarily in variables.

Yi = Bo + BiXi + BoX? + ¢
is still a linear regression model.
» The conditional mean function E[y|X] can be nonlinear in x.
“Linear” = additive in 3, not necessarily in x.
» Nonlinearities in variables allow marginal effects to vary

with x.

0
G_i = f1 + 262X
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Marginal Effects that Depend on x

» In a linear model, dy/0x = /3 is constant.
» In a nonlinear function of x, the slope changes:

Yi = Bo + Bixi + BoX? + ¢
oy
= o = B1 + 2P2X

» Interpretation:

» 3, > 0: increasing effect of x.
» 3, < 0: diminishing returns.

» Visual check: plot y(x) or Z—Z.
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lllustration: Marginal Effect for a Quadratic Function

Quadratic Model and Marginal Effects
Fitted: y = 1.99 + 0.99x + -0.4x2

Fitted relationship Marginal effect
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Polynomial Models

» General form:
YI250+51X1+BQXI~2+----|_5rxl(+€i

» Captures curvature in E[y|x] while remaining linear in 5.
» Choose degreer:

» Sequential F-tests for higher-order terms.

> Information criteria (AIC, BIC) for fit vs. complexity.

» Or choose via LASSO-regression (more later)
» Watch out for:

> Extrapolation instability at high degrees.
» Multicollinearity among ¥ terms.
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lllustration: Beware of High-Degree Polynomials

Increasing Polynomial Degree Eventually Fits All Points Exactly
iusiraiion o polynomial nterpolation vs. model complexiy

Polynomial degree = 1 Polynomial degree = 3
Low degrees underfit; fit improves as degree increases Low degrees underfit; fit improves as degree increases

2 24
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X X
Polynomial degree = 6 Polynomial degree = 11
Low degrees underfit; fit improves as degree increases Degree n-1 interpolates all points exactly
2
1
> 0
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Dummy Variables

> A dummy variable (or indicator) takes values 0 or 1 to represent
categories:

~_J1 if observation i belongs to group A
"7 10 otherwise.

» Model with one dummy:
Yi = Po+ B1Di + €
> Interpretation:
ElylD=1]—-ElylD=0]=p1 = p1 = mean difference between groups.

> You can one-hot encode multiple categories this way, but you must omit
one base category to avoid perfect collinearity (“dummy variable trap”).

Yi = Bo + B1D1j + B2Doi + - - - + &
> Interactions allow slope differences by group:
Yi = Bo + BiXi 4 B2Di + B3 (Xi x Di) + &
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Interaction Terms

> Allow the effect of one regressor to depend on another.
Yi = Bo + BiXi + Bazi + B3 (X x Z;) + ¢
» Marginal effect of x:

oy
5—514-/332

» Examples:

» Gender differences in wage returns to education.
> Policy effect only active in treated regions.

» Always include base levels of z; and x; for if you are
interested in an interaction term!
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Interactions with Dummy Variables

Interacting a continuous variable x; with a dummy D; allows for
group-specific slopes.
Yi = Bo + BiXi + B2Di + B3 (xi x Dj) + €

The model implies two regression lines:

Ely| D] = Bo + Bix, !fDiO,
(Bo 4 B2) + (Br + B3)x, ifD=1.
Interpretation:
> f,: difference in intercepts between groups (x = 0).

> 5 difference in slopes between groups — how the effect of x changes
when D = 1.

Graphically:
Parallel lines if 35 = 0, different slopes if 83 # 0.
Example:
» Wage regression with x = years of education and D = female.

> 33 < 0: smaller returns to education for women.
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Why Logarithmic Transformations?

» Many economic relationships are multiplicative rather than
additive:
y = AxPe®

» Taking logs makes this relationship additive:
Iny=InA+pFlnx+¢

» Now, 5 approximates how y changes in percentage terms
when x changes in percentage terms.

» [ntuition:

A 1% increase in x = about a 8% change iny
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Why the Log Approximation Works

» We want to understand why a change in the log of x measures a

percentage change in x.

Alnx =In(x + Ax) — In(x) = In <1 + AXX>

Let z = £ = the relative (percentage) change in x.

Expand In(1 + z) around z = 0 (using a Taylor series):
2 Z3
11’1(1"‘2):2_5"‘?_
When z is small (say a few percent), the higher-order terms are
negligible:
In(l4+2)~z
Therefore:
Ax

Alnx = In(x + Ax) — In(x) = ~
So a small percentage change in x produces roughly the same
change in log(x).
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Log Models and Interpretation

» Using the approximation:

Linear-log: y = B0 + S1ilnx+¢ = A ~ 0.014; (semi-elasticity)
AX/x
Log-linear: Iny = o + fix+¢e = AAL)/(y ~ B3 (semi-elasticity)
A .
Log-log: Iny=3o + Bilnx+e = ﬁg ~ 3 (elasticity)

» The log transformation thus links linear regression coefficients to
interpretable economic quantities (percent or proportional effects).

12/46



How Accurate is the Log Approximation?

Recall: A
In(142)~=z forsmallz= 7)(

» Compare the exact and approximate values:

Relative change z | In(1 + 2) | Approx. z | Error (%)
0.01 0.00995 0.01000 0.5%
0.05 0.04879 0.05000 2.5%
0.10 0.09531 0.10000 4.9%
0.25 0.22314 0.25000 12.1%
0.50 0.40547 0.50000 23.3%
1.00 0.69315 1.00000 44.3%

» The approximation is very accurate for small relative changes (say
below 10%), but deteriorates for larger ones.

> Visually: In(1 + z) bends below the 45° line as z grows.
Rule of thumb:

Use the log approximation only for |[Ax/x| < 0.1.

Alternatively, economists often report log points directly instead of
percentage points to avoid this approximation issue.
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lllustration: Accuracy of the Log-Approximation

In(1+z) vs. z Percentage Error of Approximation
1
20%
04 10%
—~
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0%+
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-10%4
— Approximation: z
— Exact: In(1+2)
-2 —20%
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-0.5 0.0 0.5 1.0 -03 -02 -01 0.0 0.1 0.2 0.3

z=NMx/x
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8.2: Polynomial Models




Functional Form and Economic Theory

Before relying on statistical tests, start from economic theory.

» Theory suggests shape restrictions: monotonicity, concavity,
saturation, thresholds, etc.

» Example: diminishing returns = negative second derivative

(B2 < 0).

» Utility, production, or demand functions often imply specific
curvature.

Polynomials can be a flexible approximation to such theoretical
shapes:

f(X) ~ Bo + BiX + BoX® + -+ + BX’

» But without theory, higher-degree terms risk capturing noise, not
structure.

» Therefore:

1. Use theory to motivate the expected shape of E[y|x].
2. Use statistical tests (e.g., sequential F-tests) only to check
adequacy of that shape.

15/46



Sequential F-Tests for Polynomial Terms

» To decide whether to include higher-order terms, test:
Ho:ﬁr:() VS. Hl:ﬂr#o
» More generally:
Ho:Bqgp1=---=5=0

» Compute the F-statistic comparing restricted (degree q) and
unrestricted (degree r) models:

(SSRr — SSRy)/(r — q)
SSRuJ(n—r—1)

F:

> IfF>F_g n-r—1.1-a reject Hy — higher-degree terms improve
fit.

> Repeat sequentially: degree 1 — 2 — 3 — ... until Hy not
rejected.
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Example: Choosing Polynomial Degree

Fit models of increasing degree:
Yi = Po+ BiXi + i
Yi = Bo + BiXi + BoX} + &
Yi = Bo + BuiXi + BaXi + B3X] + €
and so on.

» Use the F-test to compare models, e.g.:

. (SSRy—SSRy)/1

» Stop adding terms when F-test is insignificant.

Important: Always include all lower-order terms when testing a
higher-order one.
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Model Fit vs. Complexity

» Higher-degree polynomials improve fit in-sample ()R? 1), but may
overfit.

» Sequential F-tests guard against adding unnecessary terms, but:

> Depend on chosen « (risk of multiple testing).
» Are not ideal for predictive performance.

» Alternative: use information criteria like AIC/BIC to penalize
complexity (more on them later).
— Choose model with minimal BIC/AIC
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lllustration: Polynomial Choice

Sequential Model Selection by Polynomial Degree
Fit improves with degree, but AIC/BIC penalize complexity

AIC BIC R2
600+
600
0.9
500+ 5004
0.8
4004 4004
300 3004 0.7
i 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Polynomial degree

Sequential F-Test for Added Polynomial Terms
Reject Null-Hypothesis (p < 0.05) up to cubic; higher orders add noise

>0.999 -

0.750

0.500

Sequential
F-test p-value

0.250

<0.001-C

Polynomial degree

Simulation setup: y =2+ 1x — 0.4x> +¢, &~ N(0,0.5%)
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8.3 Confidence Intervals and Leverage




Confidence Bands in Practice

Confidence Intervals Widen Away from the Center
Dashed lines show mean weight and MPG

30 mpg

24 mpg

18 mpg

Miles per Gallon

12 mpg

6 mpg

15 {ons 2.0 ;ons 25 ;ons 3.0 ;ons 35 {ons 4.0 ;ons 45 ;ons 5.0 ;ons 55 {ons
Car Weight

Example: Fitted line for the mtcars data. Confidence bands widen at
the edges even though residual variance is constant.
Question: Why?
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Variance of y,

Start from the linear model:
y=XB+e¢, E[e] =0, var(e) = ?l,.
The OLS estimator is:
B=XX)" X'y =B+ (XX)"Xe.
The fitted value at a new point x is:
Vo = Xp8 = Xp8 + xp(X'X) 1 X e.

Take expectations, using E[¢|X] = 0:
E[yo] = E[E[Jo | X]]

- E[E[x()(X’X)‘lx’(Xﬂ +e)| x]]

= B[+ X,(XX) " X'Ee | X]|

= E[xy8] = xu8 due to Exogeneity E[s | X] =0
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Variance of y,

Subtract the mean and use var(a’Z) = a’ var(Z)a:
var(yo) = var (xy(X'X) "' X'e) = x((X'X) 7' X var()X(X'X) ™' xo.
Substitute var(e) = o2l,:
var(Yo) = 02X, (X'X) I X X(X'X) " xo.
Simplify X’X in the middle:

[var(jo) = o*Xp(X'X) " 'xo. |

Interpretation:

> The term x{,(X’X)~1x, measures how far the point x, is from the
center of the data cloud, taking into account how the data are
spread and correlated.

> In geometry, this acts like a stretch-adjusted squared distance
(the Mahalanobis distance)

> So, predictions made far from where most data lie have larger
distance and therefore larger variance.
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Example: Variance in a Bivariate Regression

For a bivariate model: y; = 8y + 51X + ;i

Then
1 x;

I , no > X
X=|: |, X'X = [ZX: ZX?}'
1 X,

Invert: ) S >
! X; - Xi
XN = s S

Plug into var(y,) = UZXO(X’X) X0, where xo = (1,Xp)":

var(Jo) = an, Zx 2x02xi+nx(ﬂ
A _<XO—X>2].

n S x?
Interpretation: The variance is smallest at xq = X (the sample center)
and grows quadratically as xo moves away. This is why predictions at
the edges have high uncertainty.
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Leverage

The quantity
ho = X6(XIX)_1X0

is known as the leverage of point xj.
» Leverage measures how far x; is from the center of the data in
feature space.

» Observations (or prediction points) with high leverage have
greater influence on the fitted line.

» The variance of the fitted value is proportional to leverage

» We can compute leverage for every observation to gain insights
if there are any points that are very influential for our fit.
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Influence on Coefficients: DFBETA

> Leverage is informative for an observations influence on the
fitted line. But this does not mean a high-leverage point
necessarily affects our coefficient of interest.

» DFBETA measures the actual impact of each observation on
each estimated coefficient:

DFBETA; = change in 3; when observation i is removed.

» Intuition:

> |f one data point can noticeably shift a slope or intercept, its
DFBETA will be large (positive or negative).

» A DFBETA close to zero means the observation does not
matter much for that coefficient.

> Rule of thumb: |DFBETA;| > 2/+/n indicates influential points.
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Aggregating DFBETAs for Robustness and Diagnostics

> Software like R, Stata, or Python statsmodels gives a full
matrix of DFBETAs: each observation i and coefficient j.

» These can be aggregated or filtered to diagnose robustness:

» |dentify which units, years, or clusters strongly affect a
specific coefficient.

» Compute average absolute DFBETA by group (region,
industry, firm, etc.) to find influential clusters.

> Visual cue: A histogram of DFBETASs for the coefficient of
interest shows how influence is distributed across
observations whether most points are small and balanced,
or a few dominate the estimate.

» Example application: In a difference-in-differences regression,
highlight units where DFBETA, ireatxpost IS large.
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8.4: Specification Choice: Information Criteria
and Penalized Regression




Model Fit vs. Complexity: The Bias—Variance Tradeoff

Bias-Variance Trade-off

» Adding regressors always increases e
|n'Samp|e ﬁt (R2 T, SSR \L) Underfitting Overfitting

» But more flexibility = higher
estimation variance

Error

» The expected out-of-sample error
decomposes into:

Model flexibility

E[(y—y)? = Bias®-+Variance-+Irreducible Noise

As model flexibility increases:
Bias | but Variance 1
The minimum of total (generalization) error gives the optimal model

complexity.
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Penalizing Flexibility: The Idea Behind Information Criteria

» The log-likelihood ¢ = log L(#) measures in-sample fit.

» Adding parameters always increases ¢ — even if we only fit
noise.

» Information criteria correct this by adding a penalty for model
complexity:
IC = —2¢ + penalty(k, n)

» Common forms:

AIC = -2/ + 2k, BIC = —2¢+klnn

» Choose the model with the lowest IC.

» AIC: smaller penalty = favors better prediction.

» BIC: stronger penalty = favors simpler models.
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Penalized Regression: Controlling Complexity Directly

» Recall OLS in matrix form:

Bovs = argmnin(y - XB)'(y — XB).
» Penalized regression adds a constraint on coefficient magnitude:
B = argmin |(y = XB)'(y — XB) + AP(8)],

where A > 0 controls how strongly we penalize complexity.

» Examples of penalty functions:

P(ﬂ)Z{Zj 7 (oo
2161 (LASSO)

> Larger A = simpler model, smaller coefficients.
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Bias-Variance Logic of Penalization

» The penalty shrinks coefficients toward zero. This reduces
variance at the cost of introducing some bias.

E[B,\] # By but var(,éA) < Var(,ém_s)

» When prediction is the goal, a small bias can be optimal if it cuts
variance substantially.
> Intuitively:

Shrink noisy slopes slightly =- lower mean-squared error overall

» The penalty strength \ determines where we sit on the
bias—variance curve.

» In practice, we choose ) by cross-validation: fit the model on
subsamples, test on held-out data, and pick the A with the
smallest average prediction error.
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Implementation: Cross-Validation and Post-LASSO

> Most software (glmnet, sklearn, Stata cvlasso, tidymodels)
automatically cross-validate :

1. Split data into folds (e.g. 10-fold CV),
2. Estimate the model on training folds,
3. Compute out-of-sample fit on validation folds,
4. Pick X that minimizes average prediction error.

> LASSO can set some coefficients exactly to zero = automatic
variable selection.

> But LASSO estimates are biased because of the shrinkage term.

» Hence, after variable selection, economists often estimate:

Bpost»LASSO = arg;nin(y - Xselectedﬁ)l(y - Xselectedﬁ)~

> Post-LASSO: Re-estimate OLS on the selected variables to
remove shrinkage bias.
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Statistical Selection vs. Economic Theory

» Economists are often cautious about purely statistical model
selection.

» LASSO is powerful when:

» we have many potential controls,
> but the focus is on the main regressor(s), not each control’s
interpretation.

> Always cross-check results with:

» domain knowledge
» theory-based restrictions
> robustness to alternative control sets

In short:

Use LASSO to narrow down; use economics to decide what makes sense.
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Application: Double Selection

» In causal inference, we are often interested in a single regressor
of interest d;:
i =ad + X8 +e

where x; are many potential controls.
» A simple LASSO for the outcome regression may omit controls
that are weakly related to y; but strongly related to d.

» Omitted variables correlated with d; = bias in &.

» Idea: Run two selection steps:

1. Regress y; on all x; with LASSO to select controls related to y.
2. Regress d; on all x; with LASSO to select controls related to d.

» Take the union of both selected variable sets, and estimate a by
OLS controlling for them.

Belloni, A., Chernozhukov, V., & Hansen, C. (2014). “Inference on Treatment Effects after
Selection among High-Dimensional Controls.” Review of Economic Studies, 81(2),
608-650.

33/46



8.5: Local Linear Regressions




Smooth Fits You Already Know: geom_smooth ()

» geom_smooth() in ggplot2
uses LOESS by default a ggplot's geom_smooth() as a Nonparametric Fit

LOESS captures curvature without

local regression that adapts ~_ speciing a functionalform

to the data’s shape.

» |t provides a quick,
nonparametric way to
visualize nonlinear
relationships:

yi = f(x;) + i, o
f(-) estimated locally. :

64

Useful for exploration and pattern recognition, but:
» The fitted shape depends on a bandwidth
» No interpretable parameters!
» Unstable at data boundaries
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Interactive lllustration: Local Smooths in Action

Shiny-App on how LOESS fits work
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Inside a Nonparametric Smoother: The Big Picture

Goal: Estimate a smooth function f(x) without imposing a specific
parametric form.

For each target point xq:

1. Assign weights w; = K(*3X2) to nearby observations.

2. Fit a simple model (often linear) using these weighted
observations.

3. Move x, across the range of x and repeat to obtain ?(x).

Key ingredients:
» The kernel K(-) decides how fast weights decline with distance.
» The bandwidth h controls how wide the local neighborhood is.

Result: A smooth, flexible fit that adapts to the local structure of the
data.

36/46



Kernels: How Local Weights Are Assigned

The kernel function K(u) determines how much weight each observation

receives based on distance
Xi — Xo

h
where h is the bandwidth (smoothing parameter).

u=

K(u) >0, K(u)=K(-u), /K(u) du=1

Intuition: Nearby points get high weights; distant points get low or zero
weight.
Common kernel shapes:

Name Kernel function K(u)

Uniform 2 1(Jul <1) (equal weights within window)
Triangular (1 —|u])1(Jul <£1) (linearly decreasing weights)
Epanechnikov  2(1 —u?)1(Ju| < 1) (optimal in MSE sense)
Gaussian \/% e~“*/2 (smooth, infinite support)

In practice: The kernel shape matters little. Most of the smoothing behavior
is driven by the bandwidth h.
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Bandwidth: The Smoothing Parameter

» The bandwidth h > 0 defines the size of the local neighborhood:

Xi — X
W,'=K<'h 0)

» Smaller h = more local fit:

> captures fine detail (low bias),
» but higher variance (less data per fit).

» Larger h = smoother fit:

> lower variance,
» but higher bias (averages distant points).
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Bias—Variance Tradeoff in Local Regression

» The bandwidth h controls how smooth the local fit is.

Zw, )Yi, w,-XOcK<X';X)

» Small h = low bias, high variance (wiggly fit)
» Large h = high bias, low variance (over-smoothed)

» Exactly the same bias—variance tradeoff as in prediction:
choosing h balances flexibility and stability.
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Why Nonparametrics Are Rare in Economics

In theory: Nonparametric methods make minimal assumptions about
functional form.

yi = f(x;) + &, f(-) estimated flexibly.
In practice: Economists rarely use fully nonparametric estimators
because:
> Curse of dimensionality: Precision declines exponentially with
the number of regressors.

Neffective ~ N - h¥ = requires huge samples if k > 2
> No structural interpretation: Nonparametric fits show patterns,
not mechanisms or parameters.

» Difficult inference: Confidence intervals and hypothesis testing
are less straightforward.

> Economists prefer interpretable, theory-consistent parameters.
Therefore: Nonparametrics are mainly used for visualization,

validation, or specific designs (e.g. RDD).
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Application: RDD

Regression Discontinuity Designs: A treatment switches on when
running variable x crosses a known cutoff ¢ (Here ¢ = 0).

D; = ]l(X,‘ > C)

If potential outcomes are smooth in x, any jump in y at ¢ identifies the

treatment effect:
7 = lim E[y|x] — lim E[y|X]
xlc x1c

Regression Discontinuity
Jump at the Cutoff

IS

Outcome y
N

o

_1.0 —0‘.5 0.10 Ol5 170
Running variable x
Idea: Compare observations just left vs. right of the cutoff. Similar

units, different treatment.
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Application: Local Linear Regression in RDD

Implementation: Fit separate local linear regressions on each side of
the cutoff c:

Yi = Qbelow + Boelow(Xi —C) +&i,  X; <C,

Yi = Qabove + Babove(Xi — C) + &,  X; > C.

Each weighted by a kernel K(*7<) emphasizing observations near c:

i Xj—C
_min. > K( ’h ) (i — below — Boetow (Xi — €))7,
Qpelow s Pbelow

irxj<c

. Xi—C
i z;CK< ’ h ) (Yi — Olabove — Babove(xi — C))Q.

CQtabove s Babove
I:Xj 2>

The estimated discontinuity:

T = Qiabove — (below ‘

Interpretation: 7 measures the difference in the fitted lines at x = c.
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8.6: Beyond the Mean: Quantile and RIF
Regressions




Why Go Beyond the Mean?

> OLS estimates the effect of x on the conditional mean E[y|x].

» But economic effects can differ across the outcome distribution:

Wage returns to education, treatment effects, inequality changes.
» Quantile regression allows heterogeneity:
Q- (y|x) =x8,, forre(0,1)

» Each 3, describes the marginal effect of x at quantile 7, e.g.
“effect on the 10th vs. 90th percentile”.

» Insight: Policies may compress or stretch the distribution, not
just shift its mean.
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Quantile Regression: Intuition

» OLS finds the line that makes the average residual zero:

Efg|x] =0 = bestfit for the mean of y|x.

» Quantile regression instead finds the line that makes, say, half
the residuals positive and half negative:

E[1{e; < 0}|xj =7 = bestfit for the r-quantile of y|x.

» For 7 = 0.5 this gives the conditional median; for + = 0.9 it fits
the 90th percentile, and so on.

» Same idea as OLS, but instead of “best fit for the mean,” it's the
“best fit for a chosen part of the distribution.”
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Interpreting Quantile Regressions

» Each 5, shows how x shifts the m-quantile of y|x:
QT(y|X+1) - QT(y|X)

» Differences across 7 reveal heterogeneous effects:

» Education may raise wages mainly at the top quantiles.
» Minimum wages affect the lower tail more strongly.

» Plotting 3, against 7 shows how effects vary across the
outcome distribution.

> Note that, these are conditional quantiles. They describe how x
affects the distribution given covariates!
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RIF-Regression: Effects on Unconditional Quantiles

> Quantile regression: effect on conditional quantiles Q. (y|x).

> Often we care about how x shifts the unconditional distribution,
e.g. the overall 10th or 90th percentile

Idea (Firpo, Fortin & Lemieux, 2009): Use the Recentered Influence
Function (RIF) of a statistic v (such as a quantile).

RIF(y;;v) = v +IF(y;; v)

» Each observation’s RIF shows how it influences the statistic v.
> Key property: E[RIF(y;;v)] = v
» Common Use: Regress the RIF on covariates:

E[RIF(yi;v) | xi] = XiBy

> 3, shows how x; affects the unconditional quantile (or other
statistic)
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