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7.1 Review: Moments of a Distribution



Reminder: What is an Expected Value?

▶ The expected value (mean) of a random variable X is its
theoretical long-run average:

E[X] =
{∫∞

−∞ xfX(x) dx, if X is continuous,∑
x∈X xP(X = x), if X is discrete.

▶ fX(x): population density (pdf or pmf).

▶ E[X] exists if
∫
|x|fX(x) dx < ∞.

▶ Example: fair die ⇒ E[X] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5.
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What Are Moments?

▶ The nth moment of X:
µ′
n = E[Xn]

▶ Examples:

E[X] (mean), E[X2] (2nd moment), E[X3],E[X4], . . .

▶ Moments summarize the shape of a distribution:
▶ 1st moment: location
▶ 2nd: spread
▶ 3rd: skewness (asymmetry)
▶ 4th: kurtosis (tail thickness)
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Central (or Centered) Moments

▶ Centered around the mean:

µn = E[(X− E[X])n]

▶ Examples:

µ1 = 0 (first central moment)
µ2 = var(X) (second moment = variance)
µ3 measures skewness (asymmetry)
µ4 measures kurtosis (tail thickness)

▶ For random vectors:

Σ = E[(x− E[x])(x− E[x])′]

4 / 76



The Sample Analogue of an Expectation

▶ The population mean E[X] depends on the unknown fX(x).

▶ Replace the population distribution by its sample analogue:

E[X] ⇒ X̄ =
1

n

n∑
i=1

Xi

▶ More generally, for any function g(X):

E[g(X)] ⇒ 1

n

n∑
i=1

g(Xi)

▶ This idea underlies all moment estimators.
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Moments and Moment Conditions

▶ Theoretical moment conditions: Many economic models imply
that for the true parameter θ0 and a collection of observed data
Zi (e.g let Zi cotanin yi, Xi, etc.)

E[g(Zi, θ0)] = 0.

Example: Exogeneity ⇒ E[Xiεi] = 0

▶ Sample analogues: In the data, replace expectations by sample
averages:

ḡn(θ) =
1

n

n∑
i=1

g(Zi, θ) ≈ 0.
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7.2 Why GMM?



Why GMM? The Big Picture

▶ OLS: Assumes exogeneity and a linear model

E[Xiεi] = 0 ⇒ β̂OLS = (X′X)−1X′y.

Relies on one specific moment condition linking Xi and εi.

▶ Maximum Likelihood Estimation: Requires assumptions on the
full distribution f(yi|Xi, θ).
▶ Efficient if correctly specified.
▶ But sensitive to misspecification.

▶ GMM: Uses only the parts of the model we are confident about
— its moment conditions:

E[g(Zi, θ0)] = 0.

▶ Provides a unifying framework that includes OLS, IV, 2SLS, and
others as special cases.
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The Method of Moments: Intuition

▶ Suppose we have L known moment conditions in the population:

E[g1(X, θ)] = 0, E[g2(X, θ)] = 0, . . . , E[gL(X, θ)] = 0.

▶ Replace population expectations by their sample analogues:

ḡl
n(θ) =

1

n

n∑
i=1

gl(xi, θ) ≈ 0.

▶ Solve ḡn(θ) = 0 for θ.
▶ L = K: exactly identified ⇒ Method of Moments.
▶ L > K: overidentified ⇒ Generalized Method of Moments

(GMM).
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Example: Estimating Mean and Variance

A simple, exactly identified method-of-moments (MM) example:

E[X− µ] = 0,

E[(X− E[X])2 − σ2] = 0.

Sample analogues:

µ̂ =
1

n

n∑
i=1

xi, σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2.

▶ σ̂2 is biased but consistent.

▶ Shows the core idea: replace expectations by averages.
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What GMM Does

Core idea
Theoretical moment conditions:

E[g(Zi, θ0)] = 0.

GMM chooses θ̂ to make the corresponding sample moments as
close to zero as possible:

θ̂ = argmin
θ

ḡn(θ)
′Wnḡn(θ), ḡn(θ) =

1

n

n∑
i=1

g(Zi, θ).

▶ Each valid moment condition contributes information about θ.

▶ Exactly identified (L = K): solves ḡn(θ) = 0.

▶ Overidentified (L > K): combines moments efficiently via Wn.
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Overidentified Example: Setup

▶ Suppose X satisfies E(X) = E(X2)− E(X)2 = λ.

▶ That is, both the mean and the variance of X equal λ.

▶ This is a property of a Poisson random variable, but we do not
assume X is Poisson.

▶ We simply use these two population relationships as moment
conditions.

E[X− λ] = 0 (1)

E[(X− E[X])2 − λ] = 0 (2)

Two moment conditions for one parameter λ ⇒ overidentified
system.

11 / 76



Sample Moment Conditions

Replace population expectations by sample averages:

ĝ1(λ) =
1

n

n∑
i=1

(xi − λ) = 0,

ĝ2(λ) =
1

n

n∑
i=1

[
(xi − x̄)2 − λ

]
= 0.

▶ These are two equations in one unknown λ.

▶ Generally, there is no single λ satisfying both exactly.

▶ Hence, the system is overidentified.

λ̂1 = x̄, λ̂2 =
1

n

n∑
i=1

(xi − x̄)2.

Most likely, λ̂1 ̸= λ̂2.
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Solving the Overidentified Problem (GMM)

▶ There is no single λ that sets both sample moments to zero.
▶ The idea of GMM: find λ̂ that makes the sample moments as

close to zero as possible.
Define the criterion function:

q(λ) = n ĝ(λ)⊤W ĝ(λ),

where

ĝ(λ) =

[
ĝ1(λ)
ĝ2(λ)

]
, W is a weighting matrix.

▶ W = I gives equal weight to both moment conditions.

▶ W =

[
1 0

0 0

]
would only consider the first moment.

▶ The optimal W minimizes the asymptotic variance of λ̂.
GMM estimator:

λ̂GMM = arg min
λ

J(λ).
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Properties of GMM Estimators

▶ Law of Large Numbers: Sample moment conditions converge to
their population counterparts:

ḡn(θ) =
1

n

n∑
i=1

g(xi, θ)
p−→ E[g(X, θ)].

▶ Central Limit Theorem: Sample moments are asymptotically
normal: √

n(ḡn(θ)− E[g(X, θ)]) d−→ N (0,Q),

where Q = cov(g(X, θ)) (adjusted under heteroskedasticity or
clustering).

Implication
These properties carry over to θ̂, the GMM estimator solving
ḡn(θ̂) = 0.
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Outlook: Where We Are Going with GMM?

▶ How do we pick the best Wn for our GMM estimator?

θ̂GMM = arg min
θ

ḡn(θ)
′Wnḡn(θ).

The choice of the weighting matrix Wn determines how
efficiently we use the available information.

▶ Choosing the optimal Wn, and proving efficiency and inference
results, will be the main task in the later part of the lecture.

▶ Historical note: This optimal weighting and efficiency result is
what earned Lars Peter Hansen (Nobel Prize, 2013) recognition
for developing GMM as a unifying estimation framework.

Next Steps

1. Build intuition from simple, exactly identified MM examples.

2. Then generalize to the efficient (two-step) GMM estimator.
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Note on Notation in Greene

▶ In Greene’s notation, the sample moment functions ḡn(λ) are
written as m(λ).

▶ Each component corresponds to one sample moment condition:

0 = −λ+
1

n

n∑
i=1

xi = m1(λ),

0 = −λ+
1

n

n∑
i=1

(xi − λ)2 = m2(λ).

▶ The criterion function then becomes:

q(λ,W) = nm(λ)⊤Wm(λ), m(λ) =

[
m1(λ)
m2(λ)

]
.
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7.3 Method of Moments - Least Squares



OLS as a Method of Moments Estimator

▶ Recall from the CEF decomposition (Lecture 3): For the linear
projection

Yi = X′
iβ + εi,

exogeneity implies the weaker condition of uncorrelatedness:

E[εi | Xi] = 0 ⇒ E[Xiεi] = 0.

▶ This yields K+ 1 population moment conditions:

E[Xi(Yi − X′
iβ)] = 0.
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OLS as a Method of Moments Estimator (continued)

▶ Expanding the expectation E[Xi(Yi − X′
iβ)] = 0. gives

E[XiYi]− E[XiX′
i ]β = 0,

which can be rearranged as

E[XiX′
i ]β = E[XiYi].

▶ The sample analog replaces expectations with averages:(
1

n

n∑
i=1

XiX′
i

)
β̂ =

1

n

n∑
i=1

XiYi.

▶ Multiplying both sides by n and rearranging yields the familiar
OLS estimator:

β̂OLS = (X′X)−1X′y.
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Second Set of Moment Conditions: Variance

▶ After estimating β from the first set of (K+ 1) moment
conditions

E[Xi(Yi − X′
iβ)] = 0,

we can use the residuals to form a second set of moment
conditions for the variance.

▶ Under homoskedasticity,

E[ε2i − σ2] = 0,

i.e. a single moment condition identifies σ2.
▶ More generally (e.g. in feasible GLS or heteroskedasticity

modeling),
E[Zi(ε

2
i − σ2(Xi))] = 0,

where Zi is a set of instruments or functions of Xi that enter the
variance equation.

▶ The sample analogs of these conditions yield estimators of the
variance parameters after β̂ is obtained.
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7.4 Instrumental Variables



Motivation: Endogeneity and Bias

▶ So far, OLS relied on the assumption:

E[εi | Xi] = 0 ⇒ E[Xiεi] = 0.

▶ But if any regressor xij is correlated with the error:

E[Xiεi] ̸= 0,

OLS becomes biased and inconsistent.

▶ Example:
▶ Education → wage regression: ability is unobserved.
▶ Ability affects both education and wages ⇒ endogeneity.

Question
How can we estimate causal effects when regressors are
endogenous?
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Idea: Instrumental Variables (IV)

▶ Find variables Zi (instruments) that satisfy:

1. Relevance: correlated with the endogenous regressor

cov(Zi,Xi) ̸= 0

2. Exogeneity: uncorrelated with the structural error

cov(Zi, εi) = 0

▶ Then Zi provides variation in Xi that is “as if exogenous.”

▶ The idea: use Zi to isolate the exogenous component of Xi.
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Exogenous Regressors Are Also Instruments

▶ Recall that OLS relied on exogeneity:

E[Xiεi] = 0.

▶ In IV estimation, we replace (or augment) Xi by instruments Zi
satisfying:

E[Ziεi] = 0.

▶ Important: Any exogenous regressor in Xi automatically
satisfies this condition. It can stay in Zi as its own instrument.

Zi = [Xexog
i , Zother

i ]

▶ Hence, we only need additional instruments for the endogenous
regressors.

Implication
When specifying Zi, always include all exogenous Xi; only add new
instruments for the endogenous variables.
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Historical Origins: The Wrights and Instrumental Variables

Philip G. Wright (1928) ”The Tariff on Animal and Vegetable Oils”
▶ First known empirical use of instrumental variables (IV) in economics.

▶ Used exogenous supply shifters (tariffs, transport costs) as
instruments to estimate demand elasticities for oil products.

▶ Appendix B develops the IV method with help from his son, Sewall
Wright, a biostatistician, who introduced the same algebraic logic in
genetics through path analysis (causal diagrams).

Key idea
Identify demand by exploiting supply-side variation that is
uncorrelated with demand shocks: the fundamental IV logic we still
use today.

References:
Wright, P. G. (1928), The Tariff on Animal and Vegetable Oils.
Stock, J. H. (2003), “Who Invented Instrumental Variable Regression?”
Cunningham, S. (2021), Causal Inference: The Mixtape, Ch. 7.
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Modern Example: Customer Satisfaction and Loyalty

Huang, G. & Sudhir, K. (2021). The Causal Effect of Service Satisfaction on
Customer Loyalty. Management Science, 67(1), 317–341.

Research question: What is the causal effect of service satisfaction on
customer loyalty?

Challenge: Satisfaction may be endogenous (e.g. unobserved traits of
customers, reverse causality).

Instrument: Use variation in exogenous service shocks (e.g. unexpected
disruptions or external factors) that affect satisfaction but are plausibly
unrelated to demand or loyalty directly.

Rationale:
▶ Exogenous shocks influence satisfaction not via customers’ latent

types.
▶ They shift satisfaction but (arguably) don’t directly shift loyalty except

through satisfaction.
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Sources of Endogeneity

Endogeneity arises whenever regressors are correlated with the error
term:

E[Xiεi] ̸= 0.

Main sources:

1. Omitted Variable Bias (OVB): Unobserved factor affects both X
and Y.
Example: Ability affects both education and earnings.

2. Simultaneity: X and Y determined together.
Example: Price and quantity in supply–demand models.

3. Measurement Error: Mismeasured regressors create correlation
with ε.

→ Special case - Attenuation Bias: Bias toward zero.

4. Lagged Dependent Variable: yt−1 correlated with error term ut in
dynamic panels.
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Omitted Variable Bias (OVB)
Setup: Partition the full regressor matrix as

X = [X1 X2 ],

where X1 are the included regressors and X2 are the omitted ones.
The true model is

y = X1β1 + X2β2 + ε.

If we estimate the short regression omitting X2,

y = X1β̃1 + ε̃,

the OLS estimator β̃1 will generally be biased because the omitted
block X2 can be correlated with the included block X1.
Intuition:
▶ Omitted variables that affect y and are correlated with X1 violate

E[X′
1ε] = 0.

▶ Their effect is partially attributed to X1, distorting β̃1.
▶ Example: Unobserved ability affects both education (X1) and

earnings (y).
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OVB via Frisch-Waugh-Lovell Decomposition

Using the FWL theorem (see Lecture 4), the coefficient from the short
regression is

β̃1 = β1 + (X′
1X1)

−1X′
1X2β2.

Interpretation:

▶ The bias term (X′
1X1)

−1X′
1X2β2 shows how the omitted

regressors X2 project onto the included regressors X1.

▶ Bias arises only if both:

X′
1X2 ̸= 0 (correlation between regressors)
β2 ̸= 0 (omitted variables matter for y).

▶ In the scalar one-omitted-variable case:

Bias = β2
cov(x1, x2)

var(x1)
.
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Simultaneity: The Supply and Demand Example
Market equilibrium:

Qd = α1 − α2P+ ud (demand)
Qs = β1 + β2P+ us (supply)

Qd = Qs = Q (equilibrium condition)

Solve for the equilibrium price and quantity:
α1 − α2P+ ud = β1 + β2P+ us

⇒ P =
α1 − β1 + ud − us

α2 + β2
.

Substitute this price into the demand equation:

Q = α1 − α2P+ ud = α1 − α2
α1 − β1 + ud − us

α2 + β2
+ ud.

▶ Q depends on both ud and us.
▶ Hence P and Q are jointly determined: P correlated with the

demand shock ud.
▶ ⇒ OLS of Q on P gives a biased estimate of the demand slope.
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Solution to Simultaneity: Instrumental Variables
We look for an instrument Z that satisfies:

cov(Z,P) ̸= 0︸ ︷︷ ︸
Relevance: Z shifts supply

, cov(Z, ud) = 0︸ ︷︷ ︸
Exogeneity: Z does not affect demand directly

.

▶ Z affects equilibrium price P only through its effect on supply.
▶ Z is unrelated to unobserved demand shocks ud.
▶ Intuitively: Z provides variation in P that is “as if random” from

the perspective of demand.

Economic Interpretation

▶ Valid instrument: a variable that moves the equilibrium point
along the demand curve by shifting the supply curve.

▶ Example: Weather, input costs, or policy shocks changing
producers’ behavior but not consumers’ preferences.
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Dynamic Models and the Lagged Dependent Variables

Model:
yit = ρyi,t−1 + x′itβ + uit, uit = µi + νit

▶ yi,t−1 is correlated with µi, the individual fixed effect µi.

▶ Even if E[νit] = 0, we get:

E[yi,t−1uit] ̸= 0.

▶ This violates the exogeneity condition.

▶ Common solution: First-difference the equation:

∆yit = ρ∆yi,t−1 +∆x′itβ +∆νit,

and use instruments like yi,t−2 (Arellano–Bond).
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Measurement Error and Attenuation Bias

True model:

yi = βx∗i + ui, but we observe xi = x∗i + vi,

where vi is classical measurement error:

E[vi] = 0, cov(x∗i , vi) = 0, cov(ui, vi) = 0.

OLS with observed xi:

β̂ =
cov(yi, xi)

var(xi)
.

Substitute and expand:

cov(yi, xi) = cov(βx∗i + ui, x∗i + vi) = β var(x∗i ).

But
var(xi) = var(x∗i + vi) = var(x∗i ) + var(vi).
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Measurement Error and Attenuation Bias (contd.)

Expected OLS coefficient:

E[β̂] = β ·
var(x∗i )

var(x∗i ) + var(vi)
= β · λ, 0 < λ < 1.

Interpretation:

▶ λ = signal
signal+noise

▶ Measurement error inflates var(xi) but not cov(yi, xi)
▶ ⇒ Estimated slope shrinks toward zero

Intuition
Noisy regressors mix signal and noise ⇒ weaker correlation with yi ⇒
slope estimate pulled toward zero.
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Method of Moments Perspective on IV

▶ Recall the structural model:

yi = x′iβ + εi

▶ OLS moment condition (fails with endogeneity):

E[xiεi] = 0.

▶ IV replaces this by valid instruments:

E[ziεi] = 0.

▶ Substitute εi = yi − x′iβ:

E[zi(yi − x′iβ)] = 0.

▶ These are L moment conditions for K parameters.
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Solving the IV Moment Conditions

▶ Expand:

E[ziyi]− E[zix′i ]β = 0 ⇒ E[zix′i ]β = E[ziyi].

▶ Under full rank of E[zix′i ], the population solution is:

β =
(

E[zix′i ]
)−1 E[ziyi].

▶ Replace expectations by sample averages:

β̂IV =

(
1

n

n∑
i=1

zix′i

)−1(
1

n

n∑
i=1

ziyi

)
.
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Matrix Notation and the IV Estimator

Let

Z =

z
′
1
...
z′n

 , X =

x
′
1
...
x′n

 , y =

y1...
yn

 .

Then the sample IV estimator is:

β̂IV = (Z′X)−1Z′y.

▶ If L = K (exactly identified): this is the simple IV estimator.

▶ If L > K (overidentified): 2SLS covers this case!
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Two-Stage Least Squares (2SLS)

Stage 1: Regress endogenous regressor(s) on instruments:

X = ZΠ+ v ⇒ X̂ = ZΠ̂.

Stage 2: Regress y on predicted values X̂:

β̂2SLS = (X̂′X̂)−1X̂′y = (X′PZX)−1X′PZy,

where PZ = Z(Z′Z)−1Z′ is the projection onto the instrument space.

Interpretation
2SLS isolates the exogenous variation in X explained by Z and uses it
to estimate the causal effect of X on y.
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IV as GMM problem

▶ Recall the 2SLS estimator:

β̂2SLS = (X′PZX)−1X′PZy, PZ = Z(Z′Z)−1Z′

▶ 2SLS is a special case of GMM with moment conditions

E[Zi(yi − X′
iβ)] = 0

and weighting matrix

W = (Z′Z/n)−1.

▶ Then the GMM estimator becomes:

β̂GMM = (X′ZWZ′X)−1X′ZWZ′y = (X′PZX)−1X′PZy.

Key Insight
The projection matrix PZ in IV is just the GMM weighting matrix that
projects residuals onto the instrument space.
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Overidentification in IV

Setup:
E[Zi(yi − X′

iβ0)] = 0, L > K.

▶ More valid instruments (L) than endogenous regressors (K) ⇒ system
is overidentified.

▶ GMM (and 2SLS) combine all available instruments efficiently.
▶ The extra moment conditions can be used to test instrument validity.

Geometric intuition:
▶ Each instrument defines a “moment hyperplane” in parameter space.
▶ With overidentification, these hyperplanes may not intersect perfectly.
▶ GMM chooses β̂ minimizing the weighted distance to all hyperplanes.

Interpretation
Overidentification is both a blessing (efficiency) and a curse (risk of invalid
instruments).
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Testing Instrument Validity: Hansen’s (1982) J-Test

Purpose: Tests joint validity of instruments when the model is
overidentified (L > K).

J = n ḡ(β̂)′Ŵ ḡ(β̂), J ∼ χ2
L−K.

Interpretation:

▶ Checks whether all moment conditions (instruments) are
consistent with exogeneity.

▶ High J-statistic: at least one instrument likely invalid (correlated
with ui).

▶ Low J-statistic: cannot reject joint validity.

▶ Only applies when L > K, i.e., there are more instruments than
endogenous regressors.
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The Problem of Weak Instruments

First stage of 2SLS:
Xi = Ziπ + vi

where Zi are instruments and π measures their strength.
If instruments are weak:

▶ Cov(Z,X) is small ⇒ fitted values X̂i = Ziπ̂ barely differ from Xi.

▶ The 2SLS estimator

β̂2SLS = (X′PZX)−1X′PZY

becomes noisy and biased toward OLS.

▶ Even if instruments are exogenous (Cov(Z, ε) = 0), weak
relevance (Cov(Z,X) ≈ 0) causes:
▶ finite-sample bias ≈ OLS bias,
▶ large standard errors and size distortions in t-tests.
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Testing for Weak Instruments

Diagnostics:

▶ Check first-stage F-statistic

▶ Old rule: F > 10 (Staiger & Stock, 1997).

▶ Recent work: higher thresholds needed.
▶ Montiel Olea & Pflueger (2013): use effective Feff.
▶ Lee et al. (2022): reliable 5% t-tests require F ≈ 100;

propose tF adjustment.

▶ Multiple endogenous regressors: use Sanderson–Windmeijer
(SW) partial F or Kleibergen–Paap rk statistic.

Refs: Staiger & Stock (1997); Montiel Olea & Pflueger (2013, JBES); Lee et al. (2022,
Econometrica); Sanderson & Windmeijer (2016, J. Econometrics).
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7.5 GMM, Optimal Weighting and Efficiency



GMM with Overidentification: Criterion & Weights

Setup: For the true parameter β0,

E[m(yi, xi, zi, β0)] = 0, m̄n(β) =
1

n

n∑
i=1

m(yi, xi, zi, β).

Criterion Function:

qn(β) = m̄n(β)
′ Wn m̄n(β), β̂GMM = argmin

β
qn(β).

▶ Any symmetric positive definite Wn yields a consistent estimator.

▶ Simple start: Wn = I (equal weight on each moment).

▶ Why consider other Wn? Efficiency. The optimal choice is
Wn

p−→ S−1, where

S p−→ var
(√

n m̄n(β0)
)
.
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Assumptions for Consistency (GMM1–GMM4)

GMM1 Valid moments & LLN: E[m(yi, xi, zi, β0)] = 0 and m̄n(β0)
p−→ 0

(i.i.d. or weak dependence; finite second moments).

GMM2 Continuity/Compactness: qn(β) is continuous in β and the
parameter space is compact (or standard conditions ensuring
existence of a minimizer).

GMM3 Identification:

Q(β) = m̄(β)′ Wm̄(β) has a unique global minimum at β0,

where m̄(β) = E[m(yi, xi, zi, β)] and W is positive definite.

GMM4 Weight stability: Wn
p−→ W with W positive definite.

Implication
Under GMM1–GMM4, β̂GMM

p−→ β0.
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Consistency: Step 1–2 — Getting qn(β̂) → 0

Setup:
qn(β) = m̄n(β)

′Wnm̄n(β), β̂ = arg min
β

qn(β).

Step 1: Moment convergence (GMM1, GMM4) At the true parameter, the
sample moments approach zero:

m̄n(β0)
p−→ 0.

Then, since qn(β) is just a quadratic form,

qn(β0) = m̄n(β0)
′Wnm̄n(β0)

p−→ 0.

Interpretation: The objective is small when evaluated at the truth.

Step 2: By minimization,

0 ≤ qn(β̂) ≤ qn(β0)
p−→ 0 ⇒ qn(β̂)

p−→ 0.

Interpretation: The estimator fits the moment conditions at least as well as
the true parameter. Therefore, the minimized criterion also goes to zero.
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Consistency: Step 3–4 — From qn(β̂) → 0 to β̂ → β0

Step 3: Positive definiteness (GMM4) Because Wn ≻ 0, the quadratic form is
zero only when the moments are zero:

qn(β̂) → 0 ⇒ m̄n(β̂)
p−→ 0.

Interpretation: The only way to make the criterion small is to make the sample
moments small.

Step 4: Identification (GMM3) If the population moments equal zero only at
the true parameter,

m̄(β) = 0 only at β0,

then
m̄n(β̂)

p−→ 0 ⇒ β̂
p−→ β0.

Summary of Logic
(GMM1) Valid moments ⇒ qn(β0)→0⇒ qn(β̂)→0⇒ m̄n(β̂)→0⇒ β̂→β0.
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Variance of the Moment Conditions

▶ Recall: For the true parameter β0,

E[m(yi, xi, zi, β0)] = 0.

▶ But each m(yi, xi, zi, β0) is a random vector — its components
vary across observations.

▶ The sample average

m̄n(β0) =
1

n

n∑
i=1

m(yi, xi, zi, β0)

has variance

var(
√
n m̄n(β0)) = Φ, where Φ = E[mi(β0)mi(β0)

′].

▶ Φ summarizes how noisy and correlated the moment conditions
are.
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Why Variance Matters for GMM

Intuition
Each moment condition contributes information about β0, but some
are more precise or correlated than others.

▶ If some ml(·) have high variance ⇒ less reliable.

▶ If some are correlated ⇒ contain overlapping information.

▶ Therefore, when we form the quadratic form

qn(β) = m̄n(β)
′Wnm̄n(β),

the weighting matrix Wn should give:
▶ more weight to precise (low variance) moments,
▶ less weight to noisy or redundant ones.
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Covariance Structure of the Moments

Φ = E[mi(β0)mi(β0)
′] =

 var(m1) cov(m1,m2) · · ·
cov(m2,m1) var(m2) · · ·

...
. . .


▶ If moment conditions are independent ⇒ Φ is diagonal.

▶ If correlated ⇒ off-diagonal elements nonzero.

▶ Estimation efficiency depends on how we incorporate this
covariance.

Goal
Choose W that accounts for this covariance to make β̂GMM efficient.
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The Matrix Φ = E[mim′
i]

Suppose we have two centered moment conditions m1 and m2 with

E[m1] = 0, E[m2] = 0.

Then their covariance matrix is

Φ = E
[(

m1

m2

)(
m1 m2

)]
=

(
E[m2

1] E[m1m2]
E[m2m1] E[m2

2]

)
.

Why this simplification holds:

var(m1) = E[(m1 − E[m1])
2] = E[m2

1]

cov(m1,m2) = E[(m1 − E[m1])(m2 − E[m2])] = E[m1m2]

Intuition
Because each moment condition is defined to have mean zero at the
true parameter (E[mi(β0)] = 0), their variance and covariance reduce
to simple expectations of products. This is what makes the matrix
Φ = E[mim′

i ] appear throughout the GMM variance formulas.
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Properties of the Quadratic Form

▶ Recall the GMM criterion:

qn(β) = m̄n(β)
′Wnm̄n(β),

where m̄n(β) : RK→RL collects the sample moments.
▶ Dimensions:

qn(β) = m̄n(β)
′︸ ︷︷ ︸

1×L

Wn︸︷︷︸
L×L

m̄n(β)︸ ︷︷ ︸
L×1

⇒ qn(β) ∈ R.

▶ Wn symmetric and positive definite:

x′Wnx > 0 for all x ̸= 0.

Interpretation
qn(β) is a weighted squared distance between the sample moments
and 0.
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7.5.1 Asymptotic Distribution of GMM



Goal and Key Objects
Goal: Derive the asymptotic distribution (sampling variability) of the
GMM estimator.

β̂GMM = arg min
β

m̄n(β)
′Wnm̄n(β), m̄n(β) =

1

n

n∑
i=1

mi(β).

At the true parameter β0:

E[mi(β0)] = 0, Γ = E
[
∂mi(β0)

∂β′

]
, Φ = E[mi(β0)mi(β0)

′].

Dimensions:

m̄n(β) : L× 1, Γ : L× K, Wn : L× L.

Intuition
GMM combines L noisy moment conditions to estimate K
parameters. We want to understand how β̂GMM fluctuates around β0

as n grows.

51 / 76



Step 1: Linearize the Sample Moments

Use a first-order (mean value) expansion of the sample moments
around β0:

m̄n(β̂GMM) ≈ m̄n(β0) + Γn(β̃)(β̂GMM − β0),

where

Γn(β̃) =
∂m̄n(β̃)

∂β′ , β̃ lies between β̂GMM and β0.

Intuition
We approximate how the sample moments react to small changes in
β. The Jacobian Γ plays the same role as the “design matrix” in
regression. It captures how informative the moments are.
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Step 1: Linearize via the Mean Value Theorem

β0

β̂GMMm̄n(β)

β̃

tangent

secant

Slope = Γn(β̃)

Intuition
By the Mean Value Theorem, there exists β̃ ∈ (β0, β̂GMM) such
that the derivative Ḡn(β̃) equals the average slope between the
endpoints. This β̃ is the linearization point used to approximate
m̃n(β̂) around β0 in the GMM derivation.
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Mean Value vs. Taylor Approximation
Why we say “Mean Value Approximation” rather than “Taylor
Expansion”:
▶ The true parameter β0 is unknown, so we cannot directly

evaluate Γn(β0) =
∂m̄n(β)
∂β′

∣∣
β0

.

▶ The Mean Value Theorem ensures there exists some point β̃
between β0 and β̂GMM such that

m̄n(β̂GMM) = m̄n(β0) + Γn(β̃) (β̂GMM − β0).

▶ As n → ∞, β̂GMM
p−→ β0, so Γn(β̃)

p−→ Γ. This lets us treat it like a
first-order Taylor expansion asymptotically.

Key takeaway
The “mean value approximation” is the mathematically valid form of
the linearization when the true parameter is unknown.
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Step 2: First-Order Condition (FOC)

The estimator minimizes the quadratic form

qn(β) = m̄n(β)
′Wnm̄n(β).

Differentiate with respect to β and set to zero:

∂qn(β̂GMM)

∂β
= 2Γn(β̂GMM)

′Wnm̄n(β̂GMM) = 0.

Intuition
At the minimum, the weighted average of sample moments (the
“residual moments”) must be orthogonal to the gradient direction
Γ′
nWn. This ensures that we are at the point where the sample

moments are as close to zero as possible under Wn.
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Step 3: Substitute the Linear Approximation

Plug the linearized form of m̄n(β̂GMM) into the FOC:

Γn(β̂GMM)
′Wn

[
m̄n(β0) + Γn(β̃)(β̂GMM − β0)

]
≈ 0.

Rearranging gives:

β̂GMM − β0 ≈ −
(
Γ′
nWnΓn

)−1
Γ′
nWn m̄n(β0).
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Step 4: Replace Sample Terms by Population Limits

Under standard regularity conditions:

Γn(β̃)
p−→ Γ, Wn

p−→ W.

Hence,
β̂GMM − β0 ≈ −(Γ′WΓ)−1Γ′Wm̄n(β0).

Intuition
This linearization says: the GMM estimator is just a weighted linear
transformation of the sample moments. Errors in m̄n(β0) propagate
to β̂GMM through Γ and W.
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Step 5: Scale by
√
n

Multiply both sides by
√
n:

√
n(β̂GMM − β0) ≈ −(Γ′WΓ)−1Γ′W

√
n m̄n(β0).

Interpretation
Sampling error in m̄n(β0) drives the sampling error in β̂GMM. The term
Γ′W transforms the moment noise into parameter noise.
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Step 6: Apply the Central Limit Theorem

By the multivariate CLT:

√
n m̄n(β0)

d−→ N (0,Φ), Φ = E[mi(β0)mi(β0)
′].

Combining with the previous step:

√
n(β̂GMM − β0)

d−→ N
(
0, (Γ′WΓ)−1Γ′WΦWΓ(Γ′WΓ)−1

)
.

Intuition
Moment fluctuations are asymptotically normal, and the estimator
inherits that normality—scaled and rotated by Γ and W.
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Step 7: Asymptotic Variance and Efficiency

Avar(β̂GMM) = (Γ′WΓ)−1Γ′WΦWΓ(Γ′WΓ)−1.

Interpretation

▶ Φ — covariance of moment conditions (noise in the data).

▶ Γ — sensitivity of moments to parameters (identification
strength).

▶ W — weighting scheme that determines efficiency.

The efficient GMM estimator uses W = Φ−1, minimizing this variance.
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Summary of the Derivation

1. Linearize sample moments around β0.

2. Use FOC to link β̂ and m̄n(β0).

3. Replace sample Jacobians by their probability limits.

4. Scale by
√
n to study sampling variation.

5. Apply CLT to the sample moments.

6. Derive asymptotic normality:

√
n(β̂GMM − β0)

d−→ N (0,VGMM),

with VGMM as above.
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Applying the General GMM Variance Formula to OLS
General GMM asymptotic variance:

VGMM = (Γ′WΓ)−1Γ′WΦWΓ(Γ′WΓ)−1.

For OLS:

mi(β) = xi(yi − x′iβ) ⇒ Γ = −E[xix′i ], W = I, Φ = E[xix′iε2i ].

Under homoskedasticity:

E[ε2i | Xi] = σ2 ⇒ Φ = σ2 E[xix′i ].

Plug in:
VOLS = σ2(E[xix′i ])−1.

Interpretation
The general GMM variance collapses to the textbook OLS variance
once we substitute the OLS moment conditions and
homoskedasticity.
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Sample Analogues: From Population to Data

Population matrices:

Qxx = E[xix′i ], Φ = σ2Qxx.

Sample analogues:

1

n
X′X p−→ Qxx, σ̂2 =

ε̂′ε̂

n− k
p−→ σ2.

Hence:
V̂OLS = σ̂2(X′X/n)−1 p−→ VOLS.
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Why TSLS is a GMM Estimator
Moment conditions:

E[zi(yi − x′iβ)] = 0

GMM criterion:

Q(β) = gn(β)
′Wgn(β) where gn(β) =

1

n
Z′(y− Xβ)

Minimization problem:

β̂GMM = arg min
β

(y− Xβ)′ZWZ′(y− Xβ)

First-order condition:

X′ZWZ′(y− Xβ̂GMM) = 0 ⇒ β̂GMM = (X′ZWZ′X)−1X′ZWZ′y

Special case: If W = (Z′Z)−1, then

β̂GMM = (X′PZX)−1X′PZy where PZ = Z(Z′Z)−1Z′
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7.5.2 Optimal Weighting and Efficiency



Asymptotic Efficiency and the Optimal Weighting Matrix

Goal: Find W that minimizes the asymptotic variance VGMM.

VGMM = (Γ′WΓ)−1Γ′WΦWΓ(Γ′WΓ)−1.

The minimizing (optimal) weighting matrix is

Wopt = Φ−1 .

Substituting Wopt yields

VGMM,opt = (Γ′Φ−1Γ)−1.

▶ This is the smallest possible asymptotic variance among all
GMM estimators.

▶ The corresponding estimator is the efficient GMM (or two-step
GMM).

65 / 76



Intuition for the Optimal Wopt = Φ−1

▶ Think of W as telling us how much to “trust” each moment.

▶ If a moment condition has:
▶ high variance ⇒ down-weight it,
▶ low variance ⇒ give it more influence.

▶ Correlated moments: Φ−1 also de-correlates them.

Practical Implementation

1. Step 1: Estimate with W = I to get preliminary β̂.

2. Step 2: Estimate Φ̂ using residuals at β̂.

3. Step 3: Re-estimate with W = Φ̂−1 (efficient 2-step GMM).
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Review: GMM and the Wald Test Analogy

An Analogy: Both the GMM criterion function and the Wald test
measure how far some sample quantities are from zero, using an
appropriate weighting matrix.

Jn(θ)︸ ︷︷ ︸
GMM criterion

= n ḡn(θ)
′ Wn ḡn(θ)

W︸︷︷︸
Wald statistic

= (Rβ̂ − r)′ [R V̂ar(β̂)R′]−1 (Rβ̂ − r)

▶ GMM: minimizes the weighted distance of sample moments
ḡn(θ) from zero.

▶ Wald: measures the weighted distance of estimated restrictions
(Rβ̂ − r) from zero.

▶ In both: the weighting matrix gives more weight to precise and
less correlated components.
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Efficient (Two-Step) GMM in Practice

Step 1: Use a simple weight (e.g., Wn = I) to obtain a
preliminary estimate:

β̂(1) = arg min
β

m̄n(β)
′m̄n(β).

Step 2: Estimate the covariance of the moments:

Φ̂n =
1

n

n∑
i=1

m̂i(β̂
(1))m̂i(β̂

(1))′, m̂i(β̂
(1)) = m(yi, xi, zi, β̂(1)).

Step 3: Re-estimate using the optimal weight:

Wn = Φ̂−1
n , β̂(2) = arg min

β
m̄n(β)

′Wnm̄n(β).

Result: √
n(β̂(2) − β0)

d−→ N (0, (Γ′Φ−1Γ)−1).
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7.6 GMM Applications



Why Economists Like GMM

▶ Flexible: needs only moment conditions — no full likelihood.

▶ Unifying: OLS, IV, 2SLS, dynamic panels all fit in one framework.

▶ Theory-based: estimates parameters implied by equilibrium or
optimality.

▶ Robust: valid under heteroskedasticity or mild misspecification.

▶ Widely used:
▶ Macroeconomics: Structural Models
▶ Finance: Asset pricing and risk premia
▶ IO: Demand and cost estimation

Bottom Line
GMM connects economic theory to data with minimal assumptions.
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Structural Models and Moment Conditions

▶ Idea: GMM allows estimation of parameters in theoretical
systems of equations where equilibrium conditions imply
specific moments.

▶ Structural models:

f(yi, xi, εi; θ0) = 0 ⇒ E[g(Zi, θ0)] = 0

with g(·) derived from the model’s behavioral or equilibrium
relations.

▶ Examples:
▶ Demand and supply systems
▶ Consumption Euler equations
▶ Investment models with adjustment costs

▶ GMM estimates θ̂ such that these model-implied moments
match the data.
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Example: Consumption Smoothing Intuition
Idea: Consumers prefer smooth consumption over time — spending
and saving so that the value of a euro today equals the value of a euro
tomorrow.
Basic trade-off:

u′(ct) = β(1 + rt+1) Et[u′(ct+1)]

▶ u′(ct) = value of an extra unit of consumption today
▶ β = how patient the consumer is
▶ (1 + rt+1) = return from saving

Economic meaning:
▶ If today’s marginal utility > expected future value → consume

less today (save more).
▶ If it’s lower → consume more today.

When consumers make these adjustments optimally, the equation
holds on average in the data.
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From Economic Rule to GMM Estimation

Model-implied moment condition:

Et
[
u′(ct) (β(1 + rt+1)u′(ct+1)− u′(ct))

]
= 0.

Step 1: Use data on consumption growth and interest rates to
construct the sample analogue of this moment.
Step 2: Find β̂ (and possibly risk aversion γ) that makes the sample
moment as close to zero as possible:

β̂GMM = arg min
β

ḡn(β)
′Wḡn(β)

Interpretation:

▶ GMM checks whether consumers’ observed choices are
consistent with the theory.

▶ If the model’s optimality condition fits the data well, our
estimated β̂ measures how patient consumers are.
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Structural Systems and Moment Restrictions

▶ Consider a simultaneous system:

y1i = α1y2i + x′1iβ1 + u1i,
y2i = α2y1i + x′2iβ2 + u2i.

▶ Theoretical model implies cross-equation restrictions such as:

E[z1iu1i] = 0, E[z2iu2i] = 0.

▶ Stack all equations into a single GMM system:

E[g(Zi, θ0)] = 0, g(Zi, θ) =

[
z1i(y1i − α1y2i − x′1iβ1)
z2i(y2i − α2y1i − x′2iβ2)

]
.

▶ Allows joint estimation and testing of cross-equation
restrictions.
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Arellano–Bond (1991): Dynamic Panel GMM
Dynamic panel model:

yit = ρyi,t−1 + x′itβ + µi + νit.

Problem: yi,t−1 correlated with µi.
▶ Difference to remove µi:

∆yit = ρ∆yi,t−1 +∆x′itβ +∆νit.

▶ Instruments: earlier lags of yit that remain correlated with ∆yi,t−1

but uncorrelated with ∆νit.

E[yi,t−s ∆νit] = 0 for s ≥ 2.

▶ GMM stacks these as valid moment conditions:

gi(θ) =

T∑
t=3

yi,t−2 (∆yit − ρ∆yi,t−1 −∆x′itβ).

▶ Efficient estimation uses all available lags and instruments.
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Instruments in Arellano–Bond

Example: T = 5 periods.yi1 0 0
yi1 yi2 0
yi1 yi2 yi3


︸ ︷︷ ︸

Zi

instruments for

∆yi3
∆yi4
∆yi5



▶ Each row: valid instruments for ∆yit using all available lags
yi,t−2, yi,t−3, . . . .

▶ Lower-triangular structure ⇒ expanding set of moment
conditions.

▶ GMM combines them efficiently
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