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7.1 Review: Moments of a Distribution




Reminder: What is an Expected Value?

» The expected value (mean) of a random variable X is its
theoretical long-run average:

BiX] I3 xfx(x) dx, if X is continuous,
- > xex XP(X =x), if Xis discrete.

> fx(x): population density (pdf or pmf).
> E[X] exists if [ [x|fx(x)dx < oc.
» Example: fair die = EX] = (1+2+3+4+5+6)/6 = 3.5.
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What Are Moments?

» The n'" moment of X:
tin = E[X"]

» Examples:

E[X] (mean), E[X?] (2nd moment), E[X®],E[X*],...

» Moments summarize the shape of a distribution:

» st moment: location

» 2nd: spread

> 3rd: skewness (asymmetry)
> 4th: kurtosis (tail thickness)
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Central (or Centered) Moments

» Centered around the mean:

fin = E[(X — E[X])"]

» Examples:
u =0 (first central moment)
p2 = var(X) (second moment = variance)
13 measures skewness  (asymmetry)
14 Measures kurtosis (tail thickness)

» For random vectors:

% = E[(x — E[x])(x — E[x])']
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The Sample Analogue of an Expectation

» The population mean E[X] depends on the unknown fx(x).

» Replace the population distribution by its sample analogue:
1
EX| = X=_ Z}x;
1=

» More generally, for any function g(X):

» This idea underlies all moment estimators.
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Moments and Moment Conditions

» Theoretical moment conditions: Many economic models imply
that for the true parameter 6, and a collection of observed data
Z; (e.g let Z; cotanin y;, X;, etc.)

E[g(Z,60)] = 0.

Example: Exogeneity = E[Xje;] =0

» Sample analogues: In the data, replace expectations by sample
averages:

_ 1 o
9n(0) = ~ > 9(Zi.0) ~ 0.
i=1
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7.2 Why GMM?




Why GMM? The Big Picture

> OLS: Assumes exogeneity and a linear model
E[X,'E,‘] =0 = BOLS = (X’X)‘lx’y.
Relies on one specific moment condition linking X; and «;.

» Maximum Likelihood Estimation: Requires assumptions on the
full distribution f(y;|X;, 0).

» Efficient if correctly specified.
» But sensitive to misspecification.

» GMM: Uses only the parts of the model we are confident about
— its moment conditions:

E[g(zla 00)] = 0.

» Provides a unifying framework that includes OLS, IV, 2SLS, and
others as special cases.
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The Method of Moments: Intuition

» Suppose we have L known moment conditions in the population:
» Replace population expectations by their sample analogues:
g6 = 3 g 0)~ 0
n n - Iy .
=
> Solve gn(#) = 0 for 6.
» [ = K: exactly identified = Method of Moments.

» | > K: overidentified = Generalized Method of Moments
(GMM).
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Example: Estimating Mean and Variance

A simple, exactly identified method-of-moments (MM) example:
E[X — 4]
E[(X — E[X])* - 0]

0,
0.

Sample analogues:

:

n
lth 6* Z(Xi_/l)2'
i=1 i:l

» 2 is biased but consistent.

» Shows the core idea: replace expectations by averages.
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What GMM Does

Theoretical moment conditions:

E[g(Zi,60)] = 0.

GMM chooses 6 to make the corresponding sample moments as
close to zero as possible:

. B B B 1<
0 = argmin gn(0)WaGn(0),  Gn(6) = > _9(Zi,0).
i=1

» Each valid moment condition contributes information about 4.
» Exactly identified (L = K): solves g,(0) = 0.

» Overidentified (L > K): combines moments efficiently via W,,.
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Overidentified Example: Setup

> Suppose X satisfies E(X) = E(X?) — E(X)? = \.
» That is, both the mean and the variance of X equal .

> This is a property of a Poisson random variable, but we do not
assume X is Poisson.

» We simply use these two population relationships as moment
conditions.

EX-A=0 (1)
E[(X-EX])*-XN=0 (2

Two moment conditions for one parameter \ = overidentified
system.
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Sample Moment Conditions

Replace population expectations by sample averages:

n

» These are two equations in one unknown .
» Generally, there is no single X satisfying both exactly.

» Hence, the system is overidentified.

A _ - 1 _
M =X, dp=-— Z(xi —X)2.

Most likely, \; # Xo.
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Solving the Overidentified Problem (GMM)

» There is no single A that sets both sample moments to zero.

» The idea of GMM: find ) that makes the sample moments as
close to zero as possible.

Define the criterion function:

a(\) =ng(\)"Wg(n),
where

@
9 = L?z()‘)

] , W is a weighting matrix.

» W =1 gives equal weight to both moment conditions.

1 0
> W= {0 O] would only consider the first moment.

» The optimal W minimizes the asymptotic variance of .

GMM estimator: R
AGMM = arg m)%n J(A).
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Properties of GMM Estimators

> Law of Large Numbers: Sample moment conditions converge to
their population counterparts:

Zg Xi, 0 £> E[g(X,0)].

» Central Limit Theorem: Sample moments are asymptotically
normal:

V(Gn(0) — Elg(X,0)])) L N(0,0Q),

where Q = cov(g(X, 0)) (adjusted under heteroskedasticity or
clustering).

Implication

These properties carry over to 6, the GMM estimator solving
gn(e) = O.
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Outlook: Where We Are Going with GMM?

» How do we pick the best W, for our GMM estimator?
Oomm = arg n%in Gn(0) Whgn(0).

The choice of the weighting matrix W, determines how
efficiently we use the available information.

» Choosing the optimal W, and proving efficiency and inference
results, will be the main task in the later part of the lecture.

» Historical note: This optimal weighting and efficiency result is
what earned Lars Peter Hansen (Nobel Prize, 2013) recognition
for developing GMM as a unifying estimation framework.

1. Build intuition from simple, exactly identified MM examples.

2. Then generalize to the efficient (two-step) GMM estimator.
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Note on Notation in Greene

» In Greene's notation, the sample moment functions g,(\) are
written as m(\).

» Each component corresponds to one sample moment condition:
1 n
0=-A+-— E Xi =my(\
+ n £ i 1( )7

0=-A+ %Xn:(x,- —A)Z=my(N).

i=1
» The criterion function then becomes:

g\ W)=nm(\)TWm()\), m\) = mm :
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7.3 Method of Moments - Least Squares




OLS as a Method of Moments Estimator

> Recall from the CEF decomposition (Lecture 3): For the linear
projection
yﬁ = )(?Kg +€i
exogeneity implies the weaker condition of uncorrelatedness:
E[E,' |X,] =0 = E[X,'E,'] = 0.

» This yields K + 1 population moment conditions:

E[Xi(Yi — XiB)] = 0.
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OLS as a Method of Moments Estimator (continued)

» Expanding the expectation E[X;(Y; — Xj/3)] = 0. gives
E[X;Yi] — E[XiX]] 8 =0,
which can be rearranged as
E[XiX{| B = E[X;Yi].

» The sample analog replaces expectations with averages:
1< sl
(5 Zx,-x,f> B=2 XY
i=1 i=1

» Multiplying both sides by n and rearranging yields the familiar
OLS estimator:

BoLs = (X'X) "' X'y.
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Second Set of Moment Conditions: Variance

> After estimating 8 from the first set of (K + 1) moment
conditions
E[Xi(Y; — XiB)] =0,

we can use the residuals to form a second set of moment
conditions for the variance.

» Under homoskedasticity,
E[f — 0% =0,
i.e. a single moment condition identifies 2.

» More generally (e.g. in feasible GLS or heteroskedasticity
modeling),
EZ(sf — o*(Xi))] = 0,

where Z; is a set of instruments or functions of X; that enter the
variance equation.

> The sample analogs of these conditions yield estimators of the
variance parameters after 3 is obtained.
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7.4 Instrumental Variables




Motivation: Endogeneity and Bias

» So far, OLS relied on the assumption:
Efei | X]i=0 = E[Xg]=0.
> But if any regressor xj is correlated with the error:
E[Xie] # 0,
OLS becomes biased and inconsistent.

» Example:

» Education — wage regression: ability is unobserved.
» Ability affects both education and wages =- endogeneity.

How can we estimate causal effects when regressors are
endogenous?
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|dea: Instrumental Variables (IV)

» Find variables Z; (instruments) that satisfy:
1. Relevance: correlated with the endogenous regressor

cov(Z;, Xi) # 0
2. Exogeneity: uncorrelated with the structural error
cov(Zj,e)) =0

» Then Z; provides variation in X; that is “as if exogenous.”

» The idea: use Z; to isolate the exogenous component of X;.
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Exogenous Regressors Are Also Instruments

» Recall that OLS relied on exogeneity:
E[X,'e,'] =0.
» In IV estimation, we replace (or augment) X; by instruments Z;

satisfying:
E[Z,'E,‘] =0.

» Important: Any exogenous regressor in X; automatically
satisfies this condition. It can stay in Z; as its own instrument.

Z, = X9, Zothe

» Hence, we only need additional instruments for the endogenous
regressors.

Implication

When specifying Z;, always include all exogenous X;; only add new
instruments for the endogenous variables.
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Historical Origins: The Wrights and Instrumental Variables

Philip G. Wright (1928) "The Tariff on Animal and Vegetable Oils”
» First known empirical use of instrumental variables (IV) in economics.

> Used exogenous supply shifters (tariffs, transport costs) as
instruments to estimate demand elasticities for oil products.

» Appendix B develops the IV method with help from his son, Sewall
Wright, a biostatistician, who introduced the same algebraic logic in
genetics through path analysis (causal diagrams).

Key idea

Identify demand by exploiting supply-side variation that is
uncorrelated with demand shocks: the fundamental IV logic we still
use today.

References:

Wright, P. G. (1928), The Tariff on Animal and Vegetable Oils.

Stock, J. H. (2003), “Who Invented Instrumental Variable Regression?”
Cunningham, S. (2021), Causal Inference: The Mixtape, Ch. 7.
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Modern Example: Customer Satisfaction and Loyalty

Huang, G. & Sudhir, K. (2021). The Causal Effect of Service Satisfaction on
Customer Loyalty. Management Science, 67(1), 317-341.

Research question: What is the causal effect of service satisfaction on
customer loyalty?

Challenge: Satisfaction may be endogenous (e.g. unobserved traits of
customers, reverse causality).

Instrument: Use variation in exogenous service shocks (e.g. unexpected
disruptions or external factors) that affect satisfaction but are plausibly
unrelated to demand or loyalty directly.

Rationale:

» Exogenous shocks influence satisfaction not via customers’ latent
types.

» They shift satisfaction but (arguably) don't directly shift loyalty except
through satisfaction.
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Sources of Endogeneity

Endogeneity arises whenever regressors are correlated with the error
term:
E[Xié‘,'] # 0.

Main sources:

1. Omitted Variable Bias (OVB): Unobserved factor affects both X
and Y.
Example: Ability affects both education and earnings.

2. Simultaneity: X and Y determined together.
Example: Price and quantity in supply—demand models.

3. Measurement Error: Mismeasured regressors create correlation
with €.
— Special case - Attenuation Bias: Bias toward zero.

4. Lagged Dependent Variable: y; _; correlated with error term u; in
dynamic panels.
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Omitted Variable Bias (OVB)

Setup: Partition the full regressor matrix as
X=[X1 Xz2],

where X; are the included regressors and X, are the omitted ones.
The true model is

y=X101+ X202 + €.
If we estimate the short regression omitting X»,
y=X1B1 +¢,
the OLS estimator 3; will generally be biased because the omitted
block X, can be correlated with the included block X;.
Intuition:

» Omitted variables that affect y and are correlated with X; violate
E[X|e] = 0.

> Their effect is partially attributed to X;, distorting /3;.

» Example: Unobserved ability affects both education (X;) and
earnings (y).
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OVB via Frisch-Waugh-Lovell Decomposition

Using the FWL theorem (see Lecture 4), the coefficient from the short
regression is }

Br = B1+ (X1X1) " X\ Xaf2.
Interpretation:

» The bias term (X} X1) =X} X2/, shows how the omitted
regressors Xs project onto the included regressors Xj.

» Bias arises only if both:

X1 Xa # 0 (correlation between regressors)
B2 #0 (omitted variables matter for y).

» In the scalar one-omitted-variable case:

COV(Xl,XQ)

Bias = 35 var(x1)
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Simultaneity: The Supply and Demand Example

Market equilibrium:

Q%=1 — asP +uy (demand)
Q° = B1 4 foP + Us (supply)
Q=0°=0Q (equilibrium condition)

Solve for the equilibrium price and quantity:
arp — agP +Ug = B1 + B2P + Us
ay — B1 4+ Ug — Us
az + B2
Substitute this price into the demand equation:
a1 — B1+Ug — Us

Q=01 —asP+Uug=a1 —as + Ug.
ag + B2

= P=

» Q depends on both ugy and us.

» Hence P and Q are jointly determined: P correlated with the
demand shock uy.

» = OLS of Q on P gives a biased estimate of the demand slope.
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Solution to Simultaneity: Instrumental Variables

We look for an instrument Z that satisfies:

cov(Z,P) #0 cov(Z,ug) =0
~— —

Relevance: Z shifts supply Exogeneity: Z does not affect demand directly

» Z affects equilibrium price P only through its effect on supply.
» Zis unrelated to unobserved demand shocks uy.

» Intuitively: Z provides variation in P that is “as if random” from
the perspective of demand.

Economic Interpretation

» Valid instrument: a variable that moves the equilibrium point
along the demand curve by shifting the supply curve.

» Example: Weather, input costs, or policy shocks changing
producers’ behavior but not consumers’ preferences.
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Dynamic Models and the Lagged Dependent Variables

Model:
Yit = pYit—1 + XpB + Ui, Uit = pij + Vit

> yi:—1 is correlated with y;, the individual fixed effect ;.

> Evenif E[r;] = 0, we get:
ED’i,t—luit] # 0.

» This violates the exogeneity condition.

» Common solution: First-difference the equation:
Ayit = pAYit—1 + AXpS + Avg,

and use instruments like y; ;_» (Arellano—Bond).
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Measurement Error and Attenuation Bias

True model:

yi = Bx; +u;, butwe observex; =x; + v,
where v; is classical measurement error:

E[vi] =0, cov(xi,v;)=0, cov(uv;) =0.
OLS with observed x;:

= cov(yj, Xi)
var(X;)
Substitute and expand:
cov(y;, X;) = cov(BX; + uj, Xj +Vv;) = 8 var(x]).
But
var(X;) = var(Xj + v;) = var(x;") 4+ var(v;).
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Measurement Error and Attenuation Bias (contd.)

Expected OLS coefficient:

M var(x;") B
E[f]=5- var () + var(v) BA 0<A<L

Interpretation:

_ signal
> A= signal+-noise

» Measurement error inflates var(x;) but not cov(y;, X;)

» = Estimated slope shrinks toward zero

Intuition

Noisy regressors mix signal and noise = weaker correlation with y; =
slope estimate pulled toward zero.
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Method of Moments Perspective on IV

» Recall the structural model:
Yi=XiB +ei
» OLS moment condition (fails with endogeneity):
E[x;ej] = 0.
» |V replaces this by valid instruments:

E[Z,‘E,‘] =0.

> Substitute &; = y; — x/3:
E[z;(yi — xj3)] = 0.

» These are L moment conditions for K parameters.
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Solving the IV Moment Conditions

» Expand:
Elziy] - Ezx]3 =0 = E[zX]]3 = E[ziy].
» Under full rank of E[z;x]], the population solution is:

8= (E[zix]])” Elzy).

> Replace expectations by sample averages:

R 1 n -1 1 n
Biv = (ﬁ ZZin> (E ZZ:‘}’:) -
i=1 i=1
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Matrix Notation and the IV Estimator

Let
k4 X1 Y1

n Yn
Then the sample IV estimator is:

B = (ZX)"'Zy.

> If L = K (exactly identified): this is the simple IV estimator.
» If L > K (overidentified): 2SLS covers this case!
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Two-Stage Least Squares (2SLS)

Stage 1: Regress endogenous regressor(s) on instruments:
X=Zll+v = X=2ZIL
Stage 2: Regress y on predicted values X:
Basts = (X'X) X'y = (X'PzX) "' X'Pzy,
where P; = Z(Z'Z)~'Z' is the projection onto the instrument space.

Interpretation

2SLS isolates the exogenous variation in X explained by Z and uses it
to estimate the causal effect of X on y.
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IV as GMM problem

» Recall the 2SLS estimator:
Basis = (X'PZX) ' X'Pzy,  Pz=2(22)"'Z
» 2SLSis a special case of GMM with moment conditions
E[Zi(y; — X,8)] =0
and weighting matrix
W= (Zz/n)~".
» Then the GMM estimator becomes:

Boum = (X'ZWZ'X) "' X'ZWZ'y = (X'P2X) "' X'Pzy.

Key Insight

The projection matrix Pz in IV is just the GMM weighting matrix that
projects residuals onto the instrument space.
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Overidentification in IV

Setup:
E[Zi(y; — Xi Bo)] = 0, L>K.

» More valid instruments (L) than endogenous regressors (K) = system
is overidentified.

» GMM (and 2SLS) combine all available instruments efficiently.

» The extra moment conditions can be used to test instrument validity.
Geometric intuition:

» Each instrument defines a “moment hyperplane” in parameter space.

> With overidentification, these hyperplanes may not intersect perfectly.

» GMM chooses 3 minimizing the weighted distance to all hyperplanes.

Interpretation

Overidentification is both a blessing (efficiency) and a curse (risk of invalid
instruments).

38/76



Testing Instrument Validity: Hansen's (1982) J-Test

Purpose: Tests joint validity of instruments when the model is
overidentified (L > K).

J=ngBYWg(B), J~xi
Interpretation:

» Checks whether all moment conditions (instruments) are
consistent with exogeneity.

» High J-statistic: at least one instrument likely invalid (correlated
with U,‘).

> Low J-statistic: cannot reject joint validity.

» Only applies when L > K, i.e., there are more instruments than
endogenous regressors.
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The Problem of Weak Instruments

First stage of 2SLS:
Xi=Zim+v;

where Z; are instruments and = measures their strength.
If instruments are weak:

> Cov(Z, X) is small = fitted values X = Zix barely differ from X;.
» The 2SLS estimator

Basts = (X'PzX)1X'PzY

becomes noisy and biased toward OLS.

» Even if instruments are exogenous (Cov(Z, ) = 0), weak
relevance (Cov(Z, X) ~ 0) causes:

> finite-sample bias = OLS bias,
» large standard errors and size distortions in t-tests.
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Testing for Weak Instruments

Diagnostics:
> Check first-stage F-statistic
» Old rule: F > 10 (Staiger & Stock, 1997).
» Recent work: higher thresholds needed.

> Montiel Olea & Pflueger (2013): use effective F.
> Lee et al. (2022): reliable 5% t-tests require F ~ 100;
propose tr adjustment.

» Multiple endogenous regressors: use Sanderson-Windmeijer
(SW) partial F or Kleibergen—Paap rk statistic.

Refs: Staiger & Stock (1997); Montiel Olea & Pflueger (2013, JBES); Lee et al. (2022,
Econometrica); Sanderson & Windmeijer (2016, J. Econometrics).
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7.5 GMM, Optimal Weighting and Efficiency




GMM with Overidentification: Criterion & Weights

Setup: For the true parameter g,

E[m(yiaxiazhﬁo)] = 07 mn(ﬂ) = %Zm(yiaxiazhﬂ)'

i=1

Criterion Function:
an(B) = mn(ﬁ)/ W, m,(B), BGMM = arg;nin dn()-
» Any symmetric positive definite W, yields a consistent estimator.

» Simple start: W, = I (equal weight on each moment).

» Why consider other W,? Efficiency. The optimal choice is
W, 2 s—1, where

sk var (v/nmp(Bo)) -
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Assumptions for Consistency (GMM1-GMM4)

GMM1 Valid moments & LLN: E[m(y;, x;, z;, 89)] = 0 and m(5o) L)
(i.i.d. or weak dependence; finite second moments).

GMM2 Continuity/Compactness: g,(3) is continuous in 8 and the
parameter space is compact (or standard conditions ensuring
existence of a minimizer).

GMMS3 Identification:
Q(B) = m(B) Wm(p) has a unique global minimum at gy,
where m(8) = E[m(y;, x;, z;, 3)] and W is positive definite.
GMM4 Weight stability: W, 2> W with W positive definite.

Implication

Under GMM1-GMM4, By 2 Bo.
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Consistency: Step 1-2 — Getting q,,(/%’) — 0

Setup:

Gn(B) = Mn(B)' Wami(B), 8= argmﬁinqn(ﬂ).

Step 1: Moment convergence (GMM1, GMM4) At the true parameter, the
sample moments approach zero:

mMn(Bo) 2 0.
Then, since g, () is just a quadratic form,
Gn(B0) = Mn(B0)' Wamn(So) = 0.
Interpretation: The objective is small when evaluated at the truth.
Step 2: By minimization,
0 < qn(B) < n(Bo) 0 = aqu(B) % 0.

Interpretation: The estimator fits the moment conditions at least as well as
the true parameter. Therefore, the minimized criterion also goes to zero.
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Consistency: Step 3—4 — From g,(3) — 0to 5 — 3

Step 3: Positive definiteness (GMM4) Because W, >~ 0, the quadratic form is
zero only when the moments are zero:

gn(B) = 0 = ma(B) > 0.
Interpretation: The only way to make the criterion small is to make the sample
moments small.

Step 4: Identification (GMM3) If the population moments equal zero only at
the true parameter,
m(B) = 0 only at 5o,

then

m(B) B0 = |85 B.

Summary of Logic

(GMM?1) Valid moments = Gn(0) =0 = gn(3) —0 = Mn(B) =0 = 5 fo.
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Variance of the Moment Conditions

» Recall: For the true parameter g,
E[m(yi)xiazia ﬂO)] =0.

» But each m(y;, x;, z;, 3) is a random vector — its components
vary across observations.
» The sample average

n

My (Bo) = % > m(yi,xi,zi, o)

i=1
has variance

var(v/nma(B)) = @,  where & = E[m;(8,)mi(5o)’]-

» & summarizes how noisy and correlated the moment conditions
are.
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Why Variance Matters for GMM

Each moment condition contributes information about 3y, but some
are more precise or correlated than others.

» If some m'(-) have high variance = less reliable.

> |f some are correlated = contain overlapping information.

» Therefore, when we form the quadratic form
gn(B) = Mp(8)' Wamn(8),

the weighting matrix W, should give:

> more weight to precise (low variance) moments,
> |ess weight to noisy or redundant ones.
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Covariance Structure of the Moments

var(m;)  cov(my,mo)
& = E[mi(Bo)m;(Bo)] = |cov(M2,m1)  var(ms)

» |f moment conditions are independent = & is diagonal.
» If correlated = off-diagonal elements nonzero.

» Estimation efficiency depends on how we incorporate this
covariance.

Choose W that accounts for this covariance to make Bguy efficient.
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The Matrix ® = E|m;mj}
Suppose we have two centered moment conditions m; and m, with
E[ml] =0, E[mg] =0.

Then their covariance matrix is
_ el (m _( EImi]  E[mim;]
v=¢|(m:) )] = (eimm,) i)

Why this simplification holds:
var(my) = E[(m; — E[m])*] = E[m3]
COV(mhmg) = E[(m1 — E[ml])(mg — E[mg])] = E[m1m2]

Because each moment condition is defined to have mean zero at the
true parameter (E[m;(30)] = 0), their variance and covariance reduce
to simple expectations of products. This is what makes the matrix
® = E[m;m;] appear throughout the GMM variance formulas.
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Properties of the Quadratic Form

» Recall the GMM criterion:

Gn(B) = mn(B)' Wamis(8),

where m,(3) : RK— Rt collects the sample moments.

» Dimensions:

qn(ﬁ) = mn(ﬁ)/\wﬂlmn(ﬂ) = qn(ﬁ) cR.

1xL LxL [x1

» W, symmetric and positive definite:

X'Wpx >0 forallx#0.

Interpretation

gn(B) is a weighted squared distance between the sample moments
and 0.
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7.5.1 Asymptotic Distribution of GMM




Goal and Key Objects

Goal: Derive the asymptotic distribution (sampling variability) of the
GMM estimator.

e = axg min n () Warla(3), ~ n(8) = =3~ mi(5).
i=1

At the true parameter j;:

om;(Bo)
ap!

E[m;(5o)] =0, I = E[ } , & = E[m;(Bo)mi(Bo)']-

Dimensions:

ma(B):Lx1, T:LxK, Wy:LxL.

Intuition

GMM combines L noisy moment conditioqs to estimate K
parameters. We want to understand how Bgy fluctuates around fy
as n grows.
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Step 1: Linearize the Sample Moments

Use a first-order (mean value) expansion of the sample moments

around fy:
Ma(Bamm) ~ Ma(Bo) + Tn(B)(Bemm — Bo),
where o
Th(f) = %7 3 lies between Bgym and S.

Intuition

We approximate how the sample moments react to small changes in
3. The Jacobian T plays the same role as the “design matrix” in
regression. It captures how informative the moments are.
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Step 1: Linearize via the Mean Value Theorem

By the Mean Value Theorem, there exists B e (Bo, BGMM) such
that the derivative G,(3) equals the average slope between the
endpoints. This 3 is the linearization point used to approximate

mp(B) around j, in the GMM derivation.
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Mean Value vs. Taylor Approximation

Why we say “Mean Value Approximation” rather than “Taylor
Expansion”:

» The true parameter 3, is unknown, so we cannot directly

evaluate T'y(8) = aﬁe;nﬁ('ﬁ) }ﬁo‘

> The Mean Value Theorem ensures there exists some point B
between 3y and Bgun such that

Mn(Bemm) = Mn(Bo) + Tn(B) (Bemm — Bo)-

> Asn — o0, Bowm 2 Bo, 50 Tn(B) 2 T. This lets us treat it like a
first-order Taylor expansion asymptotically.

Key takeaway

The “mean value approximation” is the mathematically valid form of
the linearization when the true parameter is unknown.
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Step 2: First-Order Condition (FOC)

The estimator minimizes the quadratic form

Gn(B) = Ma(B)' Wamn(B).

Differentiate with respect to 3 and set to zero:

9Gn(Bomm)

o5 - 2Tn(Bomm) Wamn (Bemm) = 0.

Intuition

At the minimum, the weighted average of sample moments (the
“residual moments”) must be orthogonal to the gradient direction
I’} W,. This ensures that we are at the point where the sample
moments are as close to zero as possible under W,,.
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Step 3: Substitute the Linear Approximation

Plug the linearized form of m, (BGMM) into the FOC:

o Beme) Wa [Min(80) + Ta(B) (Bowma — fo)| ~ 0.
Rearranging gives:

Bemm — Bo ~ —(Fi,WnFn)*lFi,Wn mMn(Bo)-
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Step 4: Replace Sample Terms by Population Limits

Under standard regularity conditions:

Hence,

Bomm — Bo = —(T'WD) " T'Wmn(5o).

Intuition

This linearization says: the GMM estimator is just a weighted linear
transformation of the sample moments. Errors in m,(5,) propagate
to Bemm through " and W.
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Step 5: Scale by v/n

Multiply both sides by /n:

Vn(Beum — Bo) ~ —(T'WL) ™' T'W v/n i (Bo).

Interpretation

Sampling error in my(5,) drives the sampling error in Bomm. The term
"W transforms the moment noise into parameter noise.
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Step 6: Apply the Central Limit Theorem

By the multivariate CLT:
Vi (o) S N(0,@), @ = E[mi(B)mi(Bo)']
Combining with the previous step:
V(Bewm — o) % M0, (I'WD) = T'WoWD (T'Wr) ).

Moment fluctuations are asymptotically normal, and the estimator
inherits that normality—scaled and rotated by I and W.
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Step 7: Asymptotic Variance and Efficiency

Avar(Bemy) = (/WD) ' TYWOWI (I W) L.

Interpretation

» & — covariance of moment conditions (noise in the data).

» I' — sensitivity of moments to parameters (identification
strength).

» W — weighting scheme that determines efficiency.

The efficient GMM estimator uses W = ®~!, minimizing this variance.
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Summary of the Derivation

1. Linearize sample moments around j,.

Use FOC to link 3 and m, (o).

Replace sample Jacobians by their probability limits.
Scale by v/n to study sampling variation.

Apply CLT to the sample moments.

S T

Derive asymptotic normality:

V(Bowm — Bo) % N(0, Voum),

with Vgum as above.
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Applying the General GMM Variance Formula to OLS

General GMM asymptotic variance:
Voum = (T'WD) ' T'WeWI(I'WI) ~ L.
For OLS:
m;(B) =x(yi —x|8) = T =-Exx], W=I, & =E[xx].
Under homoskedasticity:
Eef | Xi]=0> = &=0"E[xx]

Plug in:
Vors = 0'2(E[X,'X,{])_1.

Interpretation

The general GMM variance collapses to the textbook OLS variance
once we substitute the OLS moment conditions and
homoskedasticity.
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Sample Analogues: From Population to Data

Population matrices:
Qxx = E[X,'X,{], d = 0'2Qxx-

Sample analogues:

1 .
Ex'x 20w, 6%= P52,

Hence: R
Vos = 62(X'X/n) ™" & Vos.
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Why TSLS is a GMM Estimator

Moment conditions:
Elzi(yi — xiB)] = 0

GMM criterion:

Q(5) = 9n(5) Wan(5) Where gn(5) = - Z(y — X)
Minimization problem:

Bemm = arg mﬁin(}’ —XB)'ZWZ'(y — XB)
First-order condition:
XZWZ'(y — XBeum) =0 = Bowum = (X'ZWZ'X)~X'ZWZ'y

Special case: If W = (Z/Z)~1, then

Bomm = (X'PzX)"'X'Pzy  where P, =2(22)"'7
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7.5.2 Optimal Weighting and Efficiency




Asymptotic Efficiency and the Optimal Weighting Matrix

Goal: Find W that minimizes the asymptotic variance Vgyu.
Vouv = (T'WD) ' T"WeWIL (T'WI) 1.

The minimizing (optimal) weighting matrix is

Wopt == q)—l .

Substituting Wop: yields

Vemm,opt = (I'@ 1)1

» This is the smallest possible asymptotic variance among all
GMM estimators.

» The corresponding estimator is the efficient GMM (or two-step
GMM).
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Intuition for the Optimal Wopt = &

» Think of W as telling us how much to “trust” each moment.
> If a moment condition has:

» high variance = down-weight it,
» |ow variance = give it more influence.

» Correlated moments: ®~! also de-correlates them.

Practical Implementation

1. Step 1: Estimate with W = | to get preliminary B.
2. Step 2: Estimate & using residuals at 3.
3. Step 3: Re-estimate with W = &~ (efficient 2-step GMM).
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Review: GMM and the Wald Test Analogy

An Analogy: Both the GMM criterion function and the Wald test
measure how far some sample quantities are from zero, using an
appropriate weighting matrix.

Jn(0)  =ngn(6) Wngn(6)
——
GMM criterion

W, =(RB—n) [RVar(3)R]™" (R3 —1)

Wald statistic

» GMM: minimizes the weighted distance of sample moments
gn(6) from zero.

> Wald: measures the weighted distance of estimated restrictions
(R3B —r) from zero.

> In both: the weighting matrix gives more weight to precise and
less correlated components.

67/76



Efficient (Two-Step) GMM in Practice

Step 1: Use a simple weight (e.g., W, = ) to obtain a
preliminary estimate:

A = arg min My (6)'Mmn (3).

Step 2: Estimate the covariance of the moments:
. 1< . . . .
=~ > (3w (BN, mi(BW) = m(y;, xi, zi, BY).
i=1

Step 3: Re-estimate using the optimal weight:

A~

Wp=o,', 8% =arg ménrﬁn(ﬁ)’Wnﬁ‘)n(B).

Result:
V(3@ = ) & N (o, (T ).
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7.6 GMM Applications




Why Economists Like GMM

> Flexible: needs only moment conditions — no full likelihood.
» Unifying: OLS, IV, 2SLS, dynamic panels all fit in one framework.

» Theory-based: estimates parameters implied by equilibrium or
optimality.

» Robust: valid under heteroskedasticity or mild misspecification.
» Widely used:

» Macroeconomics: Structural Models
» Finance: Asset pricing and risk premia
» 10: Demand and cost estimation

Bottom Line
GMM connects economic theory to data with minimal assumptions.
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Structural Models and Moment Conditions

> Idea: GMM allows estimation of parameters in theoretical
systems of equations where equilibrium conditions imply
specific moments.

» Structural models:
f(yi,xi,eis60) =0 = E[g(Zj,00)] =0
with g(-) derived from the model's behavioral or equilibrium
relations.

> Examples:

» Demand and supply systems
» Consumption Euler equations
> Investment models with adjustment costs

> GMM estimates 6 such that these model-implied moments
match the data.
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Example: Consumption Smoothing Intuition

Idea: Consumers prefer smooth consumption over time — spending
and saving so that the value of a euro today equals the value of a euro
tomorrow.

Basic trade-off:

U'(ct) = B(L + reg1) Eeu'(Cey))

» u'(ct) = value of an extra unit of consumption today
» (3 =how patient the consumer is
» (1+repq) = return from saving

Economic meaning:

» If today’s marginal utility > expected future value — consume
less today (save more).

> If it's lower — consume more today.

When consumers make these adjustments optimally, the equation

holds on average in the data.
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From Economic Rule to GMM Estimation

Model-implied moment condition:

Eq [u(e) (B(1 + rep )t (ce1) — '(€)] = 0.

Step 1: Use data on consumption growth and interest rates to
construct the sample analogue of this moment.

Step 2: Find 3 (and possibly risk aversion ~) that makes the sample
moment as close to zero as possible:

Bomm = arg mﬁin 9n(B)'Wan(B)

Interpretation:

» GMM checks whether consumers’ observed choices are
consistent with the theory.

> If the model’'s optimality condition fits the data well, our
estimated 5 measures how patient consumers are.
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Structural Systems and Moment Restrictions

» Consider a simultaneous system:
Yii = a1y + X301 + Ui,
Yoi = uaY1j + X5; B2 + Uy,
» Theoretical model implies cross-equation restrictions such as:

E[zjjuii] =0, E[zyuy] = 0.

» Stack all equations into a single GMM system:

Z1i(y1i — a1Yoi — X3;81)
E[g(Z),00) =0, g(Z:.0) = i)
[g< i 0)] ) g( iy ) z2i(,V2i — )i _X/QiﬂQ)

» Allows joint estimation and testing of cross-equation
restrictions.
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Arellano—Bond (1991): Dynamic Panel GMM

Dynamic panel model:

Yit = pYit—1 + XiB + pi + V.
Problem: y;;_, correlated with ;.
» Difference to remove p;:
Ayit = pAYit—1 + Axp + Av.
> Instruments: earlier lags of y;; that remain correlated with Ay; ;_;
but uncorrelated with Avj.
ElyisAvy) =0 fors > 2.

» GMM stacks these as valid moment conditions:
T

9i(0) = Vit (AYit — pAYit—1 — AXyB).
t=3

» Efficient estimation uses all available lags and instruments.
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Instruments in Arellano—Bond

Example: T = 5 periods.

Ayis
Ayiy

ya 0 0
Yin Yo O instruments for
Ayis

Yin VYie Vi3
| —

Z

» Each row: valid instruments for Ay;; using all available lags
Yit—2,Yit-3,. ...

» Lower-triangular structure = expanding set of moment
conditions.

» GMM combines them efficiently
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