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6.1: Linear Probability Model



The Linear Probability Model

Example: A Model of Laptop PC
Demand
▶ Outcome: Yi = 1 if customer

buys, 0 otherwise.
▶ Explanatory variable: laptop

price (Pricei).
▶ Model:

Yi = β1 + β2 Pricei + εi

▶ Predictions Ŷi are
interpreted as purchase
probabilities.
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The Linear Probability Model in a Scatterplot
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Linear Probability Model: Laptop Purchase by Price
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Interpreting the LPM (Binary Outcome)

Key idea

For a binary Yi ∈ {0, 1},

E[Yi | Pricei] = P(Yi = 1 | Pricei) = β1 + β2 Pricei.

Thus fitted values Ŷi are purchase probabilities.

▶ Marginal effect: β2 is the change in purchase probability
from a 1€ price change.

▶ Example (generic): A price increase of ∆p lowers the
purchase probability by β2 ·∆p percentage points (if
β2 < 0).

▶ Multiple regressors: With more features Xi (e.g., specs,
promos), each βk is the c.p. change in probability per unit
of Xik.
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LPM: Properties & Caveats

▶ Conveniences
▶ Easy to estimate with standard OLS
▶ Coefficients have a direct interpretation as changes in

probabilities.
▶ Standard tools (tests, confidence intervals) apply.

▶ Caveats
▶ Heteroskedasticity is inherent: var(Yi | Xi) = pi(1− pi).

⇒ Use heteroskedasticity-robust standard errors.
▶ Predicted values can lie outside the [0, 1] range.
▶ R2 is not informative with binary outcomes.
▶ But does our linearity assumption for OLS apply?
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6.2: Linear Logit Regression



From Probability to Odds

▶ The probability of a purchase is pi = P(yi = 1 | Xi).

▶ Probabilities are bounded: pi ∈ (0, 1). Hard to model linearly.

▶ Econometric trick: work with odds.

▶ Define the odds of purchase:

odds(pi) =
pi

1− pi
.

▶ Interpretation:
▶ If odds(pi) = 2, purchase is twice as likely as non-purchase.
▶ If odds(pi) = 1, equally likely.
▶ If odds(pi) = 0.5, purchase is half as likely.

▶ Odds take values in (0,∞): still not convenient for linear models!
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From Odds to Log-Odds (the Logit)

▶ The odds pi
1−pi

take values in (0,∞):

pi ∈ (0, 1) ⇒ pi

1− pi
∈ (0,∞).

▶ Taking logs removes the positive-only restriction, since

log(x) → −∞ as x → 0+, and log(x) → ∞ as x → ∞,

the transformed variable now spans the whole real line.

logit(pi) = log
(

pi

1− pi

)
∈ (−∞,∞).

▶ This makes it possible to model the log-odds as a linear function
of covariates:

log
(

pi

1− pi

)
= Xiβ.
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Linear Model for Log-Odds

▶ Start from the linear relationship in log-odds:

log
(

pi

1− pi

)
= Xiβ.

▶ Exponentiate both sides to remove the log:

pi

1− pi
= exp(Xiβ).

▶ Solve for pi:
pi = (1− pi) exp(Xiβ)

pi + pi exp(Xiβ) = exp(Xiβ)

pi =
exp(Xiβ)

1 + exp(Xiβ)
.
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Binary Choice: Laptop Demand Example

▶ In our laptop demand example, we observe for each customer i:

yi =

{
1 if laptop purchased
0 otherwise.

▶ Purchase probability:

P(yi = 1 | Xi) = pi =
exp(Xiβ)

1 + exp(Xiβ)
.

▶ Non-purchase probability:

P(yi = 0 | Xi) = 1− pi =
1

1 + exp(Xiβ)
.

▶ Each observation follows a Bernoulli distribution, just like in our
coin example last week!

P(yi | Xi) = pyi
i (1− pi)

1−yi .
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From Coins to Consumers

▶ Recall our first MLE example: flipping a coin n times, each flip
Yi ∼ Bernoulli(p).

L(p | Y1, . . . ,Yn) =
∏
i

pYi(1− p)1−Yi

▶ Each observation Yi was binary, either ”success” (head) or
“failure” (tail).

▶ Now, our laptop purchase example works the same way:
▶ Each customer either buys (Yi = 1) or doesn’t (Yi = 0).
▶ The probability of success (pi) is no longer constant, but

depends on covariates Xi.

▶ Key idea: Binary choice models (logit/probit) generalize the
Bernoulli coin model by letting pi vary with Xiβ.
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Step 1: Likelihood for the Logit Model

▶ Each observation yi ∈ {0, 1} follows a Bernoulli distribution:

P(yi | Xi) = pyi
i (1− pi)

1−yi .

▶ Assuming independence across customers:

L(β) =
n∏

i=1

pyi
i (1− pi)

1−yi .

▶ Substitute the logit probability to get a likelihood expressed in
terms of β.

pi =
exp(Xiβ)

1 + exp(Xiβ)
:

L(β) =
n∏

i=1

(
exp(Xiβ)

1 + exp(Xiβ)

)yi ( 1

1 + exp(Xiβ)

)1−yi
.
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Step 2: Log-Likelihood Derivation
▶ Start from the likelihood (from Step 1):

L(β) =
n∏

i=1

(
exp(Xiβ)

1 + exp(Xiβ)

)yi ( 1

1 + exp(Xiβ)

)1−yi
.

▶ Take logs (turn product into sum):

ℓ(β) =

n∑
i=1

[
yi log

(
exp(Xiβ)

1 + exp(Xiβ)

)
+ (1− yi) log

(
1

1 + exp(Xiβ)

)]
.

▶ Simplify each term:

log
(

exp(Xiβ)

1 + exp(Xiβ)

)
= log[exp(Xiβ)]− log[1 + exp(Xiβ)]

= Xiβ − log(1 + exp(Xiβ)),

log
(

1

1 + exp(Xiβ)

)
= − log(1 + exp(Xiβ)).

▶ Plug back in and collect terms:

ℓ(β) =

n∑
i=1

[
yiXiβ − log(1 + exp(Xiβ))

]
.
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Step 3: First-Order Condition for β

▶ Start from the log-likelihood:

ℓ(β) =

n∑
i=1

[
yiXiβ − log(1 + exp(Xiβ))

]
.

▶ Differentiate term by term, applying the chain rule to the second
part:

∂ℓ(β)

∂β
=

n∑
i=1

[
yiXi−

1

1 + exp(Xiβ)︸ ︷︷ ︸
outer derivative of log(·)

exp(Xiβ)︸ ︷︷ ︸
derivative of exp(·)

Xi︸︷︷︸
derivative of Xiβ

]
.

▶ Collecting terms, the gradient (score) of the log-likelihood is:

∂ℓ(β)

∂β
=

n∑
i=1

[
yiXi −

exp(Xiβ)

1 + exp(Xiβ)
Xi

]
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Step 4: The Score (First-Order Condition)

▶ Start from the score:

∂ℓ(β)

∂β
=

n∑
i=1

Xi

[
yi −

exp(Xiβ)

1 + exp(Xiβ)

]
.

▶ Recall pi:

pi =
exp(Xiβ)

1 + exp(Xiβ)
.

▶ Then the score function can be written compactly as:

s(β) =
n∑

i=1

Xi(yi − pi).

▶ The first-order condition (FOC) for the MLE is obtained by
setting the score to zero:

s(β) = 0.
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Why We Can’t Solve the Logit MLE Analytically

▶ The first-order condition is

s(β) =
n∑

i=1

Xi(yi − pi) = 0, pi =
exp(Xiβ)

1 + exp(Xiβ)
.

▶ Substituting pi gives

n∑
i=1

Xi

[
yi −

exp(Xiβ)

1 + exp(Xiβ)

]
= 0.

▶ The equation is nonlinear in β because β appears both inside
and outside the nonlinear function exp(Xiβ).

▶ Rearranging terms does not isolate β: it enters in a sum of
logistic functions across observations, so there is no algebraic
way to express β as a finite combination of elementary
functions.

▶ Therefore, β̂ must be found by numerical optimization.
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Step 5: Solving for β̂ (Numerical Optimization)

▶ The first-order condition

s(β) =
∑

i

Xi(yi − pi) = 0

cannot be solved in closed form.
▶ We must iterate numerically until the score is close to zero.
▶ The usual algorithm is the Newton–Raphson method:

β(t+1) = β(t) + H−1(β(t)) s(β(t)),

where H(β) is the Hessian (matrix of second derivatives) of the
log-likelihood.

▶ Intuition: move in the direction of the gradient (score) scaled by
the local curvature.

▶ In practice, software (e.g. ‘glm(family = binomial)‘ in R) does this
internally.
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Step 6: Fisher Information for the Logit Model

▶ Recall the log-likelihood:

ℓ(β) =
∑

i

[
yiX′

iβ − log(1 + eX′
i β)

]
.

▶ Score (gradient):

s(β) =
∑

i

Xi(yi − pi), pi =
eX′

i β

1 + eX′
i β
.

▶ Hessian (matrix of 2nd derivatives):

H(β) =
∂2ℓ(β)

∂β ∂β′ = −
∑

i

pi(1− pi)XiX′
i .

▶ The Observed Information is J(β) = −H(β).
▶ Taking expectations yields the Fisher Information:

I(β) = E[J(β)] =
∑

i

pi(1− pi)XiX′
i .
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Step 7: Asymptotic Properties of β̂ (MLE Theory Link)

▶ From Lecture 5: for any regular MLE θ̂,

√
n(θ̂ − θ0)

d−→ N
(
0, I(θ0)−1

)
.

▶ Applying this to the logit model:

√
n(β̂ − β0)

d−→ N
(
0, I(β0)

−1
)
, I(β0) =

∑
i

pi(1− pi)XiX′
i .

▶ The estimated covariance matrix:

V̂ar(β̂) = I(β̂)−1.

▶ All standard MLE properties (consistency, asymptotic normality,
efficiency) apply.
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Interpreting the Variance Structure

▶ pi(1−pi) is the variance of a Bernoulli(pi) outcome, analogous to
the constant error variance σ2, but varying across observations.

▶ XiX′
i is the familiar outer product of regressors.

▶ Therefore, the Fisher information

I(β0) =
∑

i

pi(1− pi)XiX′
i

can be viewed as a weighted OLS error variance matrix, where
each observation’s contribution depends on its outcome
uncertainty.

▶ Observations with pi ≈ 0.5 provide the most information; those
with pi near 0 or 1 contribute little.
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The Logit Regression Line for our Example
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Interpreting Logit Coefficients

▶ Linear effect on log-odds:

∂

∂xij
log

(
pi

1− pi

)
= βj

Each βj shifts the log-odds linearly.

▶ Effect on odds:
odds(xij + 1)

odds(xij)
= eβj

A one-unit increase in xij multiplies the odds by exp(βj).
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Interpreting Logit Coefficients

▶ Marginal effect on probability:

∂pi

∂xij
= pi(1− pi)βj

The effect on pi depends on its current level.

▶ In practice: To compute marginal effects for your sample, plug
in each observation’s predicted p̂i and take the average:

AMEj =
1

N
∑

i

p̂i(1− p̂i)βj

▶ Interpretation: Effects are largest around p̂i = 0.5 and shrink
near 0 or 1.
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Sidenote: Probit

▶ The probit model assumes that the latent index Y∗
i = Xiβ + εi

has normally distributed errors: εi ∼ N(0, 1).
▶ The observed binary outcome is

Yi =

{
1 if Y∗

i > 0,

0 otherwise.

▶ Hence, the choice probability is

P(Yi = 1 | Xi) = P(εi > −Xiβ) = Φ(Xiβ),

where Φ(·) is the standard normal CDF.
▶ Interpretation: Similar to logit, but with a different link function:

Logit: pi =
eXiβ

1 + eXiβ
vs. Probit: pi = Φ(Xiβ).

▶ Both yield very similar fitted probabilities in practice; the probit
has slightly thinner tails.
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6.3: Random Utility Model & Multinomial Logit



Random Utility Model (RUM)

▶ Individual i chooses one option j ∈ {1, . . . , J}.
▶ Utility is decomposed into

Uij = Vij + εij, Vij = X′
ijβ + αj.

▶ Choice rule:
P(yi = j) = Pr

(
Uij ≥ Uik, ∀k

)
.

▶ Binary choice (J = 2) collapses to our logit/probit model.
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From Random Utility to Choice Probabilities

▶ Each individual i faces J alternatives, each with utility

Uij = Vij + εij, Vij = X′
ijβ + αj.

▶ The decision rule:
yi = arg max

j
Uij.

▶ Hence, the probability of choosing option j is

P(yi = j) = P(Uij ≥ Uik, ∀k ̸= j) = P(εik − εij ≤ Vij − Vik, ∀k).

▶ The choice probabilities depend entirely on the joint distribution
of the error vector εi = (εi1, . . . , εiJ).
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From Random Utility to the Multinomial Logit
▶ Each individual i faces J alternatives, each with utility

Uij = Vij + εij, Vij = X′
ijβ + αj.

▶ The probability of choosing j is the chance that its utility exceeds
all others:

P(yi = j) = P(Uij ≥ Uik, ∀k ̸= j).
▶ To compute this probability, we must assume a distribution for

the unobserved parts εij.
▶ If the εij are i.i.d. Type I Extreme Value (Gumbel), the resulting

choice probabilities have a closed form:

P(yi = j) =
exp(Vij)∑J

k=1 exp(Vik)
.

Key idea
The familiar multinomial logit model is the Random Utility Model with
Gumbel-distributed unobserved utility components.
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Why the Gumbel Assumption?

▶ We assume the unobserved utilities εij are i.i.d. Type I Extreme
Value (Gumbel):

F(ε) = exp[− exp(−ε)].

▶ Independence across j means unobserved shocks to one
alternative do not affect others.

▶ The Gumbel assumption yields a closed form for the choice
probability:

P(yi = j) =
exp(Vij)∑J

k=1 exp(Vik)
.

▶ Key property: differences of i.i.d. Gumbel errors are logistically
distributed:

εik − εij ∼ Logistic(0, 1),

which gives the logit form.
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Sidenote: The Softmax Function

P(yi = j) =
exp(Vij)∑J

k=1 exp(Vik)

▶ Computer scientists and statisticians call this function a
softmax.

▶ It converts any set of real-valued scores {Vi1, . . . ,ViJ} into
probabilities that sum to 1.

▶ It’s used everywhere in classifiers, including as the final layer of
large language models (LLMs).

Different language - Same math
In econometrics, it’s the multinomial logit; in machine learning, it’s the
softmax function.
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Likelihood Function for MNL

▶ Write data in long format: one row per (i, j).

▶ Indicator yij = 1 if i chose j, else 0.

▶ Log-likelihood:

ℓ(θ) =

n∑
i=1

[ J∑
j=1

yij(αj + X′
ijβ)− log

( J∑
k=1

eαk+X′
ikβ
)]

.

▶ Estimated by maximum likelihood (same principle as binary
logit).
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Interpreting Coefficients in the Multinomial Logit
▶ The MNL expresses the probability of choosing j as

P(yi = j) =
exp(Vij)∑J

k=1 exp(Vik)
, Vij = X′

ijβ + αj.

▶ The relative odds of choosing j over k are:
P(yi = j)
P(yi = k)

= exp
(
(Xij − Xik)

′β + (αj − αk)
)
.

▶ Interpretation:
▶ A one-unit increase in attribute x raises the odds of

choosing j over k by a factor of eβx .
▶ If βx > 0, alternative j becomes relatively more attractive.
▶ For continuous variables (e.g. price, travel time), the

marginal effect depends on current probabilities.
▶ Identification:

▶ One alternative is chosen as the baseline, setting αj = 0.
▶ All other coefficients are interpreted relative to that base

choice.
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The IIA Assumption (Independence of Irrelevant Alternatives)

▶ A key property of the multinomial logit (MNL) model:

P(yi = j)
P(yi = k)

=
exp(Vij)

exp(Vik)
= exp(Vij − Vik),

which depends only on (j, k), not on other alternatives.
▶ This property is called the Independence of Irrelevant

Alternatives (IIA).
▶ Implication: The relative odds between any two options remain

unchanged if a new alternative is added or an existing one is
removed.

▶ Example: Red Bus / Blue Bus Problem
▶ Suppose options are Car and Red Bus.
▶ Adding a very similar Blue Bus splits the bus probability

share, but also (unrealistically) reduces P(Car).
▶ Consequence: The IIA assumption can be restrictive when

alternatives are close substitutes.
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Beyond IIA: Relaxing the Independence Assumption

▶ The Independence of Irrelevant Alternatives (IIA) assumption is
often unrealistic when some choices are close substitutes.

▶ More flexible models relax IIA by allowing correlated
unobserved utility components across alternatives.

▶ Common extensions:
▶ Nested Logit: Groups similar alternatives into “nests” (e.g.

public vs. private transport), allowing correlation within
nests.

▶ Mixed Logit (Random Parameters Logit): Allows
individual-level taste heterogeneity via random coefficients
βi.

▶ Multinomial Probit: Replaces the logistic with a
multivariate normal error structure, fully relaxing IIA.
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Market Shares and WTP
▶ Market shares: predicted choice probabilities can be aggregated

across individuals:

sj =
1

n

n∑
i=1

P(yi = j | Xi).

These sj give model-based market shares for each alternative.

▶ Counterfactuals: change an attribute (e.g. price of brand m),
recompute shares {sj}.

▶ Willingness to Pay (WTP): if price enters with coefficient
βprice < 0, the implicit WTP for attribute a is

WTPa = − βa

βprice
.

Interpretation: amount of money consumers are willing to pay
for a one-unit increase in a.

▶ Widely used in marketing and IO for pricing, demand estimation
and policy analysis.
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Application 1: Choice Experiments (Conjoint / Vignette Design)

▶ Choice experiments (or conjoint / vignette experiments) present
respondents with hypothetical choice sets among alternatives
differing in attributes.

▶ Each alternative is described by levels of attributes (e.g. price,
brand, features, warranty).

▶ Respondents choose their preferred alternative in each choice
set; repeated across many sets and individuals.

▶ By estimating a discrete choice model (e.g. MNL) on that data,
we can infer:
▶ Preference weights (part-worths) for attribute levels,
▶ Willingness to Pay for attribute changes,
▶ Predicted market shares under new product configurations

or pricing strategies.

▶ Widely used in marketing, public policy, political science
(different names in different disciplines)
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Example Screenshot from a Choice Experiment

From: Arntz, Brüll and Lipowski (2023) ”Do preferences for urban amenities differ by
skill”, Journal of Economic Geography, Volume 23, Issue 3, May 2023, Pages 541–576
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Application 2: Discrete-Choice Behavioural Microsimulation

▶ In behavioural microsimulation models (e.g. ZEW-EviSTA),
discrete choice models are used to simulate household labour
supply decisions.

▶ Each household i faces a set of discrete labour supply
alternatives j.

▶ For each alternative, disposable income is simulated from the
tax-benefit system.

▶ Estimated MNL (or nested logit / mixed logit) models deliver
behavioural elasticities and are used for policy counterfactuals
(e.g. reform of tax rates or child benefits).

Example:
Hebsaker, M., Stichnoth, H., Bühlmann, F., Kreuz, T., Schmidhäuser, J. & Siegloch, S.
(2022). A Microsimulation Model of the German Tax and Transfer System (ZEW-EviSTA).
ZEW Discussion Paper No. 22–026, Mannheim.
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Example Data Structure for a Labour Supply Microsimulation

Household ID Alternative j Hours Partner A Hours Partner B Net income (EUR) yij
1 1 0 0 1,800 0
1 2 0 20 2,200 0
1 3 20 0 2,400 0
1 4 20 20 2,650 1
1 5 30 30 2,800 0
1 6 40 30 3,000 0
1 7 40 40 3,100 0

▶ Each row represents one simulated alternative j for the
household

▶ Both partners’ hours enter the tax-benefit simulation of
disposable income

▶ The observed (chosen) configuration has yij = 1.

▶ Predicted choice probabilities P(yi = j) allow behavioural
response simulations under tax or benefit reforms.
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Application 3: Trust and Stock Market Participation

▶ Research question: Why do many households avoid investing in
stocks despite positive expected returns?

▶ Key idea: Low social trust reduces participation in financial
markets.

▶ Data: Dutch Household Survey, Italian bank customers, and
cross-country data on stockholding and interpersonal trust.

▶ Model: Binary choice model (probit)

P(Stocki = 1) = Φ(α+ β1 Trusti + β2 Xi),

where Φ(·) is the standard normal CDF.
▶ Interpretation:

▶ β1 > 0: higher trust ⇒ greater likelihood of stock market
participation.

▶ Trust acts as a non-financial barrier to market entry,
shaping household portfolio choices.

Source: Guiso, L., Sapienza, P. & Zingales, L. (2008). Trusting the Stock Market. Journal
of Finance, 63(6), 2557–2600.
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6.4: Other Limited Dependent Variable Models



Beyond Binary Choice Models

▶ Many dependent variables are not continuous and not just
binary.

▶ General principle: specify a data generating process (DGP) and
estimate by Maximum Likelihood (ML).

▶ Typical features that break standard regression:
▶ Censoring: Outcomes observed only above/below a

threshold
▶ Truncation: Sample selection into the data
▶ Counts: Nonnegative integers: Poisson, Neg. Binomial
▶ Durations: Time-to-event, hazard models
▶ Rare events: Low-probability binary outcomes

39 / 44



The Tobit Model: Setup

▶ Latent linear model:

y∗i = Xiβ + εi, εi ∼ N(0, σ2).

▶ Observed outcome:

yi =

{
y∗i if y∗i > 0,

0 if y∗i ≤ 0.

▶ Application: household expenditure with many zeros (e.g.
spending on durable goods, where many households report no
purchase).

▶ Idea: regression structure still holds, but part of the distribution
is censored at 0.
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Tobit: Censoring at Zero (CreditCard Expenditures)
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Tobit Likelihood: Two Cases

▶ For censored observations (yi = 0):

Pr(yi = 0 | Xi) = Pr(y∗i ≤ 0 | Xi)

= Pr
(
y∗i − Xiβ

σ
≤ 0− Xiβ

σ

)
= Φ

(
−Xiβ

σ

)
the area under the standard normal curve below −Xiβ/σ.

▶ For uncensored observations (yi > 0):

f(yi | Xi, yi > 0) = f(y∗i = yi | Xi)

=
1

σ
ϕ

(
yi − Xiβ

σ

)
the normal density of the latent outcome at the observed value.
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Tobit Likelihood: Two Cases

▶ Each observation contributes one of these terms to the full
likelihood:

L(β, σ) =
∏
yi=0

Φ
(
−Xiβ

σ

) ∏
yi>0

1

σ
ϕ
(

yi−Xiβ
σ

)
▶ Taking logs yields the Tobit log-likelihood:

ℓ(β, σ) =
∑
yi=0

logΦ
(
−Xiβ

σ

)
+

∑
yi>0

log
[
1
σϕ

(
yi−Xiβ

σ

)]
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Other Variants at a Glance

▶ Truncated regression: Data below cutoff not observed at all.

▶ Heckman selection: Outcome observed only if a selection
equation holds.

▶ Count models: Outcomes are integers (0, 1, 2, . . . ); Poisson, Neg.
Binomial, zero-inflated.

▶ Duration models: Outcomes are times to event; hazard rate
models.

▶ Rare events logit/probit: Adjustments for highly imbalanced
data.

Key Message
All are MLE-based variants, linking the observed y to an underlying
latent process.
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