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6.2 Logit
6.3 Random Utility & Multinomial Logit
6.4 Other Limited Dependent Variable Models

Literature: Greene Chapter 17
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6.1: Linear Probability Model




The Linear Probability Model

Example: A Model of Laptop PC
Demand

» Outcome: Y; = 1 if customer
buys, 0 otherwise.

» Explanatory variable: laptop
price (Price)).

» Model:

Y,‘ = /81 + /82 PriCe,‘ + &

> Predictions Y; are
interpreted as purchase
probabilities.
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The Linear Probability Model in a Scatterplot

Linear Probability Model: Laptop Purchase by Price

Customer buys a Laptop (0/1)
o o o o =
i e ? < <

o
o
:

400 EUR 800 EUR 1,200 EUR 1,600 EUR
Laptop Price (EUR)
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Interpreting the LPM (Binary Outcome)

For a binary Y; € {0, 1},

E[Y; | Pricej] = P(Y; =1 | Price;) = (1 + B2 Price;.

Thus fitted values Y; are purchase probabilities.

» Marginal effect: 3, is the change in purchase probability
from a 1€ price change.

» Example (generic): A price increase of Ap lowers the
purchase probability by 3, - Ap percentage points (if
B2 < 0).

» Multiple regressors: With more features X; (e.g., specs,
promos), each 3y is the c.p. change in probability per unit
of Xik-
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LPM: Properties & Caveats

> Conveniences

> Easy to estimate with standard OLS

» Coefficients have a direct interpretation as changes in
probabilities.

» Standard tools (tests, confidence intervals) apply.

» Caveats
> Heteroskedasticity is inherent: var(Y; | X;) = pi(1 — p;j).
= Use heteroskedasticity-robust standard errors.
> Predicted values can lie outside the [0, 1] range.
> R? is not informative with binary outcomes.
» But does our linearity assumption for OLS apply?
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6.2: Linear Logit Regression




From Probability to Odds

» The probability of a purchase is p; = P(y; = 1 | X).

> Probabilities are bounded: p; € (0,1). Hard to model linearly.
» Econometric trick: work with odds.

» Define the odds of purchase:

Pi

OddS(p,') = m
I

v

Interpretation:

> If odds(p;) = 2, purchase is twice as likely as non-purchase.
» If odds(p;) = 1, equally likely.
> If odds(p;) = 0.5, purchase is half as likely.

» 0Odds take values in (0, c0): still not convenient for linear models!
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From Odds to Log-Odds (the Logit)

> The odds ;2 take values in (0, co):

Pi
1—pi

pi€(0,1) = € (0, 00).

» Taking logs removes the positive-only restriction, since
log(x) = —occasx — 07, and log(x) — oo as x — oo,

the transformed variable now spans the whole real line.
; _ Pi
logit(p;) = log<—‘> € (—00,00).

» This makes it possible to model the log-odds as a linear function
of covariates:
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Linear Model for Log-Odds

» Start from the linear relationship in log-odds:

» Exponentiate both sides to remove the log:
bi ,
1—p exp(X;f3).
» Solve for p;:
pi = (1 — pi) exp(X;B)
pi + pi exp(X;B) = exp(X;53)

__exp(XiB)
"1t exp(XiB)
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Binary Choice: Laptop Demand Example

» In our laptop demand example, we observe for each customer i:

~_J1 iflaptop purchased
"7 )0 otherwise.

» Purchase probability:

exp(XiB
PO LX) == T
» Non-purchase probability:
1
P(yi:()'Xi):l_pi:l—i-Tp(X,ﬂ)'

» Each observation follows a Bernoulli distribution, just like in our
coin example last week!

P(yi | Xi) = pf'(1 = pi)' .
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From Coins to Consumers

» Recall our first MLE example: flipping a coin n times, each flip
Y; ~ Bernoulli(p).

L(p | Yl,...,yn) = prl(l _P)I_Y’
i

» Each observation Y; was binary, either "success” (head) or
“failure” (tail).

» Now, our laptop purchase example works the same way:

» Each customer either buys (Y; = 1) or doesn't (Y; = 0).
» The probability of success (p;) is no longer constant, but
depends on covariates Xi.

> Key idea: Binary choice models (logit/probit) generalize the
Bernoulli coin model by letting p; vary with X;5.
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Step 1: Likelihood for the Logit Model

» Each observation y; € {0, 1} follows a Bernoulli distribution:
P(yi | Xi) = pf'(1 = p)' .

» Assuming independence across customers:

Hp,’ _ 1 y,
» Substitute the logit probability to get a likelihood expressed in
terms of 5.
exp(XiB)

1+ exp(X;3) :

n exp(Xi3 Yi 1 1-yi
H<1+exp ,ﬂ)) (1+GXP(XI5)) .

i=1

i =
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Step 2: Log-Likelihood Derivation

» Start from the likelihood (from Step 1):

o) -11 (72555 )yi (o) -

i=1

» Take logs (turn product into sum):

n

=3 s o) 4008 (g ) |

i=1
» Simplify each term:
o (22X ) — logfexp()] ~ logl1 + exp(5)]
= Xi3 — log(1 + exp(Xif3)),
1
lOg(l—i—Tp(X@) = —log(1 + exp(XiB)).

» Plug back in and collect terms:

n

(B) =Y [y — log(1 + exp(Xi6))|.

i=1
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Step 3: First-Order Condition for 3

» Start from the log-likelihood:

n

(B) = [yiXid — log(1 + exp(X))]

i=1

» Differentiate term by term, applying the chain rule to the second

part:
OU(B) 1
PRS- g ) X

- 1+ exp(XiB)
i=1 . ,

derivative of exp(-) derivative of X;3
outer derivative of log(-)

» Collecting terms, the gradient (score) of the log-likelihood is:

n

aU(pB) exp(XiB)
5~ 2 eom ]
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Step 4: The Score (First-Order Condition)

» Start from the score:

OUB) _ [y, — —2Xif)
W_,;X’[y’ 1+exp(Xiﬁ)}

» Recall p;: %5)
o _SxPAiP)
"l 4 exp(XiB)

» Then the score function can be written compactly as:
n
s(B) =Y _Xilyi—pi).
i=1

» The first-order condition (FOC) for the MLE is obtained by
setting the score to zero:

s(p) = 0.
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Why We Can't Solve the Logit MLE Analytically

» The first-order condition is

N X — ) — __exn(Xif)
3(6)—;)(1(}/: pi) =0, Pi T+ exp(XiB)

» Substituting p; gives

n I, exp(X;8) _
;X' {y' 1+exp(X;3)|

» The equation is nonlinear in 3 because 3 appears both inside
and outside the nonlinear function exp(X;/53).

> Rearranging terms does not isolate §: it enters in a sum of
logistic functions across observations, so there is no algebraic
way to express 5 as a finite combination of elementary
functions.

> Therefore, 3 must be found by numerical optimization.
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Step 5: Solving for 3 (Numerical Optimization)

» The first-order condition
s(B) = _Xi(yi—p) =0
i

cannot be solved in closed form.
» We must iterate numerically until the score is close to zero.
» The usual algorithm is the Newton—Raphson method:

D = g0 L H=1(pW) (M),

where H(3) is the Hessian (matrix of second derivatives) of the
log-likelihood.

» Intuition: move in the direction of the gradient (score) scaled by
the local curvature.

» In practice, software (e.g. ‘glm(family = binomial)* in R) does this
internally.
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Step 6: Fisher Information for the Logit Model

» Recall the log-likelihood:
0B) =" [yiXiB —log(1 + €¥7)].

i
» Score (gradient):

8) =3 Xy —p) e
= iYi —Ppi), Pi=——=3"
’. 1+ eXib

» Hessian (matrix of 2nd derivatives)'

020(3 )
H(ﬂ) aﬂaﬂ/ - Zpl pl XIX

> The Observed Information is J(3) = —H(j).
» Taking expectations yields the Fisher Information:

I(8) = EM(B)] = Zpi(l - pi) XiX;.
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Step 7: Asymptotic Properties of 3 (MLE Theory Link)

» From Lecture 5: for any regular MLE 6,
V(0 60) % N(0, 1(65) 7).
» Applying this to the logit model:

V(B = Bo) % N(0, 1(80)7), Zp, (1 - py)XiX]

» The estimated covariance matrix:
Var(8) = 1(3)"".
» All standard MLE properties (consistency, asymptotic normality,

efficiency) apply.

18/44



Interpreting the Variance Structure

> pi(1—p;) is the variance of a Bernoulli(p;) outcome, analogous to
the constant error variance o2, but varying across observations.

» X;X; is the familiar outer product of regressors.

» Therefore, the Fisher information

I(Bo) = Zpi(l — pi)XiX;

can be viewed as a weighted OLS error variance matrix, where
each observation’s contribution depends on its outcome
uncertainty.

» Observations with p; = 0.5 provide the most information; those
with p; near 0 or 1 contribute little.
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The Logit Regression Line for our Example

Logit Model: Laptop Purchase by Price

1.0 D@ ® e ® W (] ® o

< o o
IS o ©
f L L

Predicted Purchase Probability
o
o

0.0 GO e Ie eI e®

400 EUR 800 EUR 1,200 EUR 1,600 EUR
Laptop Price (EUR)
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Interpreting Logit Coefficients

> Linear effect on log-odds:

9 pi
9 qoe P — 5,
X Og<1—Pi> g

Each g; shifts the log-odds linearly.

» Effect on odds:
odds(x; +1) of
odds(x;)

A one-unit increase in x; multiplies the odds by exp(/;).
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Interpreting Logit Coefficients

» Marginal effect on probability:

opi _ N3
(97,'] = pi(1 —pi)G;
The effect on p; depends on its current level.

» In practice: To compute marginal effects for your sample, plug
in each observation’s predicted p; and take the average:

1 . N
AME, — 351~ p)
i

> Interpretation: Effects are largest around p; = 0.5 and shrink
near 0 or 1.
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Sidenote: Probit

>

The probit model assumes that the latent index Y; = X8 + ¢;
has normally distributed errors: ¢; ~ N(0, 1).

The observed binary outcome is

f1 iy >,
"7 )0 otherwise.

Hence, the choice probability is
P(Yi=1[Xi) = P(ei > =XiB) = ®(Xi8),
where ®(-) is the standard normal CDF.
Interpretation: Similar to logit, but with a different link function:
eXiB

vS. Probit: p; = ®(X;3).

Both yield very similar fitted probabilities in practice; the probit
has slightly thinner tails.
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6.3: Random Utility Model & Multinomial Logit




Random Utility Model (RUM)

» Individual i chooses one optionj € {1,...,J}.

» Utility is decomposed into
U,'j = Vij+5ij7 V,'j ZX,{jﬂ+aj.

» Choice rule:
P(y, :j) = PI‘(U,‘j > Uy, Vk) .

» Binary choice (J = 2) collapses to our logit/probit model.
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From Random Utility to Choice Probabilities

» Each individual j faces J alternatives, each with utility
U,'j = Vij+5ij7 V,'j ZX,{jﬂ+aj.

» The decision rule:
¥i = argmax Uj.
j

» Hence, the probability of choosing optionj is
P(yi =j) = P(Uj > Uy, Yk #j) = P(ei — & < Vij — Vi, VK).

» The choice probabilities depend entirely on the joint distribution
of the error vector ¢; = (g1, . . ., €iy).
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From Random Utility to the Multinomial Logit

» Each individual j faces J alternatives, each with utility
U,'j = V,-,-—&-s,-,-, V,'j ZX,{jﬁ—‘rOzj.

» The probability of choosing j is the chance that its utility exceeds
all others:

Plyi =j) = P(Uj > Uy, Yk #]).

» To compute this probability, we must assume a distribution for

the unobserved parts ;.
> If the ¢ arei.i.d. Type | Extreme Value (Gumbel), the resulting

choice probabilities have a closed form:

. exp(Vj
P(y,- :.l) = J#

Zk:l exp(Vik)

The familiar multinomial logit model is the Random Utility Model with
Gumbel-distributed unobserved utility components.
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Why the Gumbel Assumption?

> We assume the unobserved utilities <; are i.i.d. Type | Extreme
Value (Gumbel):

F(e) = exp[—exp(—¢)].

» Independence across j means unobserved shocks to one
alternative do not affect others.

» The Gumbel assumption yields a closed form for the choice
probability:
exp(Vj)

e exp(Vie)

> Key property: differences of i.i.d. Gumbel errors are logistically
distributed:

Plyi=Jj) =

eik — € ~ Logistic(0,1),

which gives the logit form.
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Sidenote: The Softmax Function

exp(Vj)
Sieer exp(Vie)

» Computer scientists and statisticians call this function a
softmax.

Plyi=j) =

» It converts any set of real-valued scores {Vj;, ...,V } into
probabilities that sum to 1.

> It's used everywhere in classifiers, including as the final layer of
large language models (LLMs).

Different language - Same math

In econometrics, it's the multinomial logit; in machine learning, it’s the
softmax function.
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Likelihood Function for MNL

» Write data in long format: one row per (i, j).
» Indicator y; = 1if i chose j, else 0.

» Log-likelihood:

n

J J
00) = | D viloy +X;8) - 10g( > e“k”fkﬁ)] .

i=1 Lj=1 k=1

» Estimated by maximum likelihood (same principle as binary
logit).
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Interpreting Coefficients in the Multinomial Logit

» The MNL expresses the probability of choosing j as

. eXp(Vij) /
Pyi=j))=———"-— Vi=Xjf+u.
’ Siexp(Ve)

» The relative odds of choosing j over k are:

Pl = |
P((;li:jk)) = eXp((Xij _Xik) B8+ (aj _ ak)).

> Interpretation:
> A one-unit increase in attribute x raises the odds of
choosing j over k by a factor of e’
> If By > 0, alternative j becomes relatively more attractive.
> For continuous variables (e.g. price, travel time), the
marginal effect depends on current probabilities.
» ldentification:

> One alternative is chosen as the baseline, setting o; = 0.
» All other coefficients are interpreted relative to that base
choice.
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The IIA Assumption (Independence of Irrelevant Alternatives)

> A key property of the multinomial logit (MNL) model:

Plyi=j)  exp(Vy) v
Py =k~ (V) Vi~ Vi,

which depends only on (j, k), not on other alternatives.

» This property is called the Independence of Irrelevant
Alternatives (lIA).

» Implication: The relative odds between any two options remain
unchanged if a new alternative is added or an existing one is
removed.

» Example: Red Bus / Blue Bus Problem

» Suppose options are Car and Red Bus.
» Adding a very similar Blue Bus splits the bus probability
share, but also (unrealistically) reduces P(Car).

» Consequence: The lIA assumption can be restrictive when
alternatives are close substitutes.
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Beyond IIA: Relaxing the Independence Assumption

> The Independence of Irrelevant Alternatives (II1A) assumption is
often unrealistic when some choices are close substitutes.

» More flexible models relax IIA by allowing correlated
unobserved utility components across alternatives.

» Common extensions:

> Nested Logit: Groups similar alternatives into “nests” (e.g.
public vs. private transport), allowing correlation within
nests.

» Mixed Logit (Random Parameters Logit): Allows
individual-level taste heterogeneity via random coefficients
Bi.

» Multinomial Probit: Replaces the logistic with a
multivariate normal error structure, fully relaxing IIA.
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Market Shares and WTP

> Market shares: predicted choice probabilities can be aggregated
across individuals:

1 .
sj=~ ;P(}’i =J | X).
These s; give model-based market shares for each alternative.

» Counterfactuals: change an attribute (e.g. price of brand m),
recompute shares {s;}.

» Willingness to Pay (WTP): if price enters with coefficient
Bprice < 0, the implicit WTP for attribute a is
B
ﬁprice
Interpretation: amount of money consumers are willing to pay
for a one-unit increase in a.

WTP, =

» Widely used in marketing and IO for pricing, demand estimation

and policy analysis.
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Application 1: Choice Experiments (Conjoint / Vignette Design)

» Choice experiments (or conjoint / vignette experiments) present
respondents with hypothetical choice sets among alternatives
differing in attributes.

» Each alternative is described by levels of attributes (e.g. price,
brand, features, warranty).

> Respondents choose their preferred alternative in each choice
set; repeated across many sets and individuals.

» By estimating a discrete choice model (e.g. MNL) on that data,
we can infer:

> Preference weights (part-worths) for attribute levels,

» Willingness to Pay for attribute changes,

» Predicted market shares under new product configurations
or pricing strategies.

» Widely used in marketing, public policy, political science
(different names in different disciplines)
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Example Screenshot from a Choice Experiment

Choice 1/7

Please read the description of the two job offers carefully and make your personal decision. We ask you, even if you are
unsure, to choose one of the two cities.

Which of the two job offers would you prefer?

Wage

Cultural offerings

Social Diversity
Ecologic quality

Quality of the

infrastructure
Economic
dynamism

Family
Friendliness

From: Arntz, Briill and Lipowski (2023) "Do preferences for urban amenities differ by
skill’, Journal of Economic Geography, Volume 23, Issue 3, May 2023, Pages 541-576

Job Offer in City A

A 5% higher wage
Medium —
Medium —

High |
High |
Low i

Low l

L

Job Offer in City B

Your current/previous wage
Low |
Medium —>
High |
High |
Medium —

Medium —

|

Continue



Application 2: Discrete-Choice Behavioural Microsimulation

» In behavioural microsimulation models (e.g. ZEW-EviSTA),
discrete choice models are used to simulate household labour
supply decisions.

» Each household i faces a set of discrete labour supply
alternativesj.

» For each alternative, disposable income is simulated from the
tax-benefit system.

» Estimated MNL (or nested logit / mixed logit) models deliver
behavioural elasticities and are used for policy counterfactuals
(e.g. reform of tax rates or child benefits).

Example:

Hebsaker, M., Stichnoth, H., Bihlmann, F,, Kreuz, T., Schmidhé&user, J. & Siegloch, S.
(2022). A Microsimulation Model of the German Tax and Transfer System (ZEW-EViSTA).
ZEW Discussion Paper No. 22-026, Mannheim.
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Example Data Structure for a Labour Supply Microsimulation

Household ID  Alternativej Hours Partner A Hours Partner B Netincome (EUR)  y;

1 1 0 0 1,800 0
1 2 0 20 2,200 0
1 3 20 0 2,400 0
1 4 20 20 2,650 1
1 5 30 30 2,800 0
1 6 40 30 3,000 0
1 7 40 40 3,100 0

> Each row represents one simulated alternative j for the
household

» Both partners’ hours enter the tax-benefit simulation of
disposable income

> The observed (chosen) configuration has y; = 1.

> Predicted choice probabilities P(y; = j) allow behavioural
response simulations under tax or benefit reforms.
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Application 3: Trust and Stock Market Participation

> Research question: Why do many households avoid investing in
stocks despite positive expected returns?

> Key idea: Low social trust reduces participation in financial
markets.

» Data: Dutch Household Survey, Italian bank customers, and
cross-country data on stockholding and interpersonal trust.

» Model: Binary choice model (probit)
P(StOCki = 1) = (I’(Oé + B Trust; + (52 X,')7
where @(-) is the standard normal CDF.

> Interpretation:
» 1 > 0: higher trust = greater likelihood of stock market
participation.
» Trust acts as a non-financial barrier to market entry,
shaping household portfolio choices.

Source: Guiso, L., Sapienza, P. & Zingales, L. (2008). Trusting the Stock Market. Journal
of Finance, 63(6), 2557-2600.
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6.4: Other Limited Dependent Variable Models




Beyond Binary Choice Models

» Many dependent variables are not continuous and not just
binary.

» General principle: specify a data generating process (DGP) and
estimate by Maximum Likelihood (ML).

» Typical features that break standard regression:

» Censoring: Outcomes observed only above/below a
threshold

» Truncation: Sample selection into the data

» Counts: Nonnegative integers: Poisson, Neg. Binomial

> Durations: Time-to-event, hazard models

> Rare events: Low-probability binary outcomes
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The Tobit Model: Setup

» Latent linear model:
Yi =XiB+ei, & ~N0,0%).
» Observed outcome:

yi ifyf >0,
Yi= .
0 ifyf <o.

> Application: household expenditure with many zeros (e.g.
spending on durable goods, where many households report no
purchase).

> |dea: regression structure still holds, but part of the distribution
is censored at 0.
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Tobit: Censoring at Zero (CreditCard Expenditures)

Tobit: Credit Card Expenditure by Income (Left-Censored at 0)
Solid red: E[y | X] (censored mean); Dashed blue: E[y* | X] (latent mean)
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Tobit Likelihood: Two Cases

> For censored observations (y; = 0):

Pr(yi=0[X;) = Pr(y; <0 X))

Pr(}’f - XiB < O_Xi/8>
g g

(%)

the area under the standard normal curve below —X;3/o.

> For uncensored observations (y; > 0):

fyi | Xi,yi > 0) = fy; =yi | Xi)

)

the normal density of the latent outcome at the observed value.
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Tobit Likelihood: Two Cases

» Each observation contributes one of these terms to the full
likelihood:

0= T[o(-5) T bo(=2)
yi=0

yi>0

» Taking logs yields the Tobit log-likelihood:

U(B,o) = Zlog@(-’%) + Zlog[%qs(}’i—;(iﬂ)}
=0

yi>0
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Other Variants at a Glance

» Truncated regression: Data below cutoff not observed at all.

» Heckman selection: Outcome observed only if a selection
equation holds.

» Count models: Outcomes are integers (0, 1,2, . ..); Poisson, Neg.
Binomial, zero-inflated.

» Duration models: Outcomes are times to event; hazard rate
models.

> Rare events logit/probit: Adjustments for highly imbalanced
data.

Key Message

All are MLE-based variants, linking the observed y to an underlying
latent process.
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