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5.1: Intro to Maximum Likelihood Estimation



Is this coin fair?

Experiment
▶ Flip n = 10 times, observe

y = 7 heads.
▶ Each flip Yi ∼ Bernoulli(p).
▶ Unknown parameter

p = Pr(Yi = 1).

Goal: Choose p that makes the
observed data most likely.

Core Principle

This is Maximum Likelihood
Estimation of parameters θ of a
distribution function.
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Assumptions for Maximum Likelihood Estimation

Key ingredients of each Maximum Likelihood Problem:
1. Model specification: Each Yi has a well-specified

probability density or probability mass function f(yi | θ)
2. Independence and Identical Distribution (IID) : {Yi}ni=1 are

independent and all Yi ∼ f(yi | θ)
3. Regularity conditions: Technical assumptions so that the

math works
▶ Log-likelihood is smooth and information finite (so

derivatives/inference valid)
▶ Parameters lie in the interior (no weird boundary or

pathological cases)

Implication:

With this type of assumptions, we can build and maximize the
likelihood of any known or assumed distribution function.
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ML2 and ML3: What IID buys us

Independent:

Pr(Y1, . . . ,Yn | p) =
n∏

i=1

Pr(Yi | p)

Identically distributed:

Yi ∼ Bernoulli(p) ∀i

Payoff: The likelihood to observe our data is just a simple
product.
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From Bernoulli to ”Binomial” Likelihood
Step 1: Start from the Bernoulli model.

Each observation follows a Bernoulli distribution:

f(Yi | p) = pYi(1− p)1−Yi , Yi ∈ {0, 1}.

Step 2: Use independence.

Since flips are independent,

L(p | Y1, . . . ,Yn) =
n∏

i=1

f(Yi | p) =
n∏

i=1

pYi(1− p)1−Yi .

Step 3: Collect exponents.

L(p) = p
∑

i Yi(1− p)n−
∑

i Yi .

Step 4: Express in terms of observed number of successes.

Let y =
∑

i Yi be the number of heads (successes):

L(p) = py(1− p)n−y.

Step 5: Recognize the combinatorial term.

Any arrangement of y successes among n trials is equally likely, so multiply
by the number of such arrangements:

L(p | y, n) =

(
n
y

)
py(1− p)n−y.
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Likelihood of our sample

L(p | Y1, . . . ,Yn) =

n∏
i=1

f(Yi | p) = p y(1− p) n−y

▶ Independence ⇒ product of individual Bernoulli terms.
▶ Let y =

∑
i Yi = number of heads.

▶ This is the likelihood for the observed sequence.

Common Trick: Work with the log-likelihood!

ℓ(p) = log L(p) = y log p+ (n− y) log(1− p)

▶ log is monotone ⇒ same maximizer as L.
▶ Sums are easier than products; derivatives are simpler.

(If we aggregate over all sequences with y heads instead of just looking at our

observed sequence, we add the binomial term
(n
y
)
, but it’s constant in p.)
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The Maximization Problem for the Coin
Recall:

ℓ(p) = log L(p) = y log p+ (n− y) log(1− p)

Our First Order Condition:

∂ℓ(p)
∂p

=
y
p
− n− y

1− p
= 0 ⇒ p̂ =

y
n

Here: p̂ =
7

10
= 0.7

Check curvature to see if its a maximum:

∂2ℓ(p)
∂p2

= − y
p2

− n− y
(1− p)2

< 0

▶ Negative second derivative ⇒ unique maximum.
▶ Intuition: a sharper peak ⇒ more precise p̂.
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Likelihood Function for our Coin across Sample Sizes
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5.2: MLE Properties



Setting Up the Maximum Likelihood Problem
Goal: Estimate unknown parameter vector θ ∈ Θ ⊆ Rk that governs
the distribution of the observed data y = (y1, . . . , yn).

Model:
f(yi | θ) for i = 1, . . . , n,

where f(· | θ) is a known pdf or pmf depending on θ.

Likelihood function:

L(θ | y) =
n∏

i=1

f(yi | θ) and ℓ(θ) = log L(θ | y) =
n∑

i=1

log f(yi | θ).

Maximum Likelihood Estimator (MLE):

θ̂MLE = arg max
θ∈Θ

ℓ(θ).

Interpretation
The MLE chooses parameter values that make the observed data
most probable under the assumed model f(yi | θ).
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Properties of MLE
Under regularity conditions MLE has four properties:
M1 Consistency: The MLE θ̂ converges in probability to the true

parameter value θ0.
θ̂

p−→ θ0

M2 Asymptotic Normality: After scaling by
√
n, the distribution of

the estimation error is approximately normal, with variance given
by the inverse Fisher information.

√
n (θ̂ − θ0)

d−→ N
(
0, I(θ0)−1

)
where I(θ0) = −Eθ0

[
∂2

∂θ2 ln L(θ)
]
is the Fisher information.

M3 Asymptotic Efficiency: Among consistent estimators, the MLE
achieves the Cramér–Rao lower bound asymptotically, i.e. it has
the smallest possible asymptotic variance.

M4 Invariance: If we are interested in a function g(θ0) of the
parameter, the MLE is obtained simply by applying g to θ̂:

ĝ(θ) = g(θ̂)
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Finite-Sample Reality of the MLE

Asymptotic theory gives us:

✓ θ̂MLE is consistent: converges to θ0 as n → ∞.

✓ θ̂MLE is asymptotically normal and efficient.

✓ In large samples, likelihood-based inference is straightforward
and reliable.

But in finite samples:

▶ The MLE can be biased, especially in nonlinear models or with
small n.

▶ Sampling distributions may be skewed or heavy-tailed.

▶ Standard (asymptotic) confidence intervals may undercover the
true parameter.
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The Score Function

▶ Log-likelihood:

ℓ(θ) =

n∑
i=1

ln f(yi | θ)

▶ Score vector (gradient):

g(θ) =
∂ℓ(θ)

∂θ
=

n∑
i=1

gi(θ), gi(θ) =
∂

∂θ
ln f(yi | θ)

▶ Interpretation:
▶ gi(θ) is the contribution of observation i
▶ g(θ) is the total score
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Key Property of the Score

▶ At the true parameter θ0:

E[ gi(θ0) ] = 0

▶ Therefore:

E[g(θ0)] = E

[ n∑
i=1

gi(θ0)

]
= 0

▶ This is the Likelihood Equation, key to asymptotic
normality.

Intuition
The score is the slope of the log-likelihood. At the true
parameter θ0, the expected slope must vanish, because the
model is correctly specified and centered around θ0.
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Second Derivative ⇒ (Fisher) Information

▶ Observed information (curvature) at θ:

J(θ) = − ∂2ℓ(θ)

∂θ2

▶ Fisher information at θ0 (expected curvature):

I(θ0) = Eθ0 [J(θ0)] = −Eθ0

[
∂2ℓ(θ)

∂θ2

∣∣∣∣∣
θ=θ0

]

▶ Key role: determines the asymptotic variance

√
n(θ̂ − θ0)

d−→ N
(
0, I(θ0)−1

)
.
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Coin Example: Second Derivative
Model: Yi ∼ Bernoulli(p), independent, with y =

∑
i Yi.

Then
ℓ(p) = y log p+ (n− y) log(1− p).

First derivative (score):

∂ℓ(p)
∂p

=
y
p
− n− y

1− p
.

Second derivative (curvature):

∂2ℓ(p)
∂p2

= − y
p2

− n− y
(1− p)2

< 0.

Interpretation
Curvature tells us how sharp or flat the log-likelihood is around p.
More negative ⇒ sharper peak ⇒ more precise p̂.
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Expected Curvature and Fisher Information
Step 1: Take expectation at p = p0.

E
[
∂2ℓ(p)
∂p2

∣∣∣
p=p0

]
= −E

[
Y
p2
0

+
n− Y

(1− p0)2

]
Step 2: Use E[Y] = np0.

= −
(
np0

p2
0

+
n− np0

(1− p0)2

)
= −

(
n
p0

+
n

1− p0

)
.

Step 3: Simplify.

E
[
∂2ℓ(p)
∂p2

∣∣∣
p0

]
= − n

p0(1− p0)
.

Result (Fisher information):

I(p0) = −E
[
∂2ℓ

∂p2

]
=

n
p0(1− p0)

.

Intuition
The Fisher information is large when the likelihood is steeply curved (near
p0 ≈ 0 or 1) ⇒ variance of p̂ is small. Shallow curvature around p0 = 0.5⇒
higher variance.
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Numeric Variance of the Coin MLE
Recall: For a Bernoulli model with Yi ∼ Bernoulli(p), the Fisher
information is

I(p0) =
n

p0(1− p0)
.

Therefore, the asymptotic variance of the MLE:

var(p̂) ≈ 1

I(p0)
=

p0(1− p0)
n

.

Numerical example:
n = 10, p̂ = 0.7.

I(p̂) =
10

0.7(1− 0.7)
= 47.62, var(p̂) = 1

47.62
= 0.021.

Interpretation
With n = 10 flips, the MLE has an estimated variance of 0.021, or a
standard error

√
0.021 ≈ 0.145. Larger n or more extreme p values ⇒

higher information, smaller variance.
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Properties of the MLE: Consistency

What we saw: As N increased in the likelihood plots, the peak became
narrower and more centered around the true p0 = 0.7.

Formal idea:

1

N
ℓN(θ) =

1

N

N∑
i=1

log f(yi | θ)
p−→ E[log f(Y | θ)].

Implications:

▶ The limiting function E[log f(Y | θ)] is maximized at the true
parameter θ0.

▶ Therefore, θ̂MLE
p−→ θ0.

▶ More data −→ the likelihood concentrates around θ0.

Intuition: The likelihood surface becomes less random and more
“deterministic” as sample size grows. The MLE stabilizes around the
true value. This is consistency.
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Information Matrix Equality
Curvature or Variance of the Score:
So far we used the curvature (Hessian) to define Fisher information.
But Fisher information can also be written as the variance of the
score. The Information Matrix Equality says these are the same.
Result (one observation):

I(θ0) = var
[
gi(θ0)

]
= − E

[
Hi(θ0)

]
,

where

gi(θ) =
∂
∂θ ln f(yi | θ), Hi(θ) =

∂2

∂θ ∂θ′ ln f(yi | θ).

Intuition

▶ The score gi(θ) measures slope (random across samples).

▶ The Hessian Hi(θ) measures curvature.

▶ Their expectations agree ⇒ slope-variance and curvature tell
the same story about precision.
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The Information Matrix in Practice
Information Matrix Equality:

I(θ0) = var[g(θ0)] = − E[H(θ0)]

Problem: The expectation − E[H(θ0)] is usually not feasible in practice.

Two practical alternatives (asymptotically equivalent):
1. Observed Hessian:

Î(θ̂) = − ∂2ℓ(θ̂)

∂θ ∂θ′

2. Outer product of gradients (BHHH):

Ĩ(θ̂) =
n∑

i=1

gi(θ̂)gi(θ̂)
′

Intuition
Both estimators approximate the same information. Choice depends on
convenience: Hessian requires second derivatives, BHHH uses only first
derivatives.

(BHHH = Berndt-Hall-Hall-Hausman, 1974: “Estimation and Inference in Nonlinear
Structural Models”)
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Why the Outer Product Works

Step 1: Information matrix equality (one obs.)

I(θ0) = E[gi(θ0)gi(θ0)
′] = − E[Hi(θ0)].

Step 2: Expand variance

var[gi(θ0)] = E
[
gi(θ0)gi(θ0)

′]− E[gi(θ0)] E[gi(θ0)]
′.

Step 3: Use score property

E[gi(θ0)] = 0 ⇒ var[gi(θ0)] = E[gi(θ0)gi(θ0)
′].

In practice:

Ĩ(θ̂) =
n∑

i=1

gi(θ̂)gi(θ̂)
′

is a sample analogue of the Fisher information, avoiding second
derivatives (BHHH method).
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The Regularity Conditions we Need
Model and parameter
▶ Identifiability: f(y | θ1) = f(y | θ2) a.s. ⇒ θ1 = θ2.
▶ True parameter θ0 lies in the interior of a parameter space Θ.

Smoothness & dominance
▶ ℓ(θ) =

∑n
i=1 log f(yi | θ) is twice continuously differentiable near

θ0.
▶ Can interchange differentiation and integration; score has mean

zero and finite variance.

Information and curvature
▶ Fisher information I(θ0) exists, finite, and is non-singular.

Sampling assumptions
▶ IID (or weak dependence with LLN/CLT valid); no vanishing

information per observation.

Implication Under these, consistency, asymptotic normality, and
efficiency results apply.
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Invariance of MLE
Property: If θ̂ is the MLE of θ, then for any continuous function g(·):

ĝ(θ) = g(θ̂).

Implications:
▶ No need to re-maximize likelihood for transformations of parameters.
▶ Works for nonlinear transformations as well.

Examples:
▶ Bernoulli: if p̂ is MLE for success probability, then 1− p̂ is MLE for

failure probability.
▶ Normal: if σ̂2 is MLE for variance, then σ̂ =

√
σ̂2 is MLE for standard

deviation.

Takeaway
MLEs are automatically invariant under transformations — a very convenient
property.
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Efficiency
The precision of the MLE θ̂ is limited by the Fisher information I(θ) of the
likelihood:

var(θ̂) ≥ 1

I(θ) .

Interpretation:
▶ This is the Cramér–Rao lower bound for the variance of any regular,

asymptotically unbiased estimator of θ.
▶ For large samples,

√
n(θ̂ − θ0) is asymptotically normal with variance

var(θ̂) ≈ 1

n I(θ0)
.

▶ Under correct model specification, the MLE achieves this bound
asymptotically:

MLE has the smallest asymptotic variance
among all estimators that are root-n consistent.

Root-N consistency:
√
n (θ̂ − θ0)

d−→ \
(
0, V(θ0)

)
,

meaning that θ̂ converges to θ0 at rate 1/
√
n. This is the fastest possible rate

for regular estimators, and the MLE attains the minimum possible asymptotic
variance within this class. 24 / 69



Efficiency Proof (Step 1)

Starting from Unbiasedness:
We begin with the assumption that the estimator θ̂ is unbiased:

E[θ̂ − θ0 | θ0] = 0.

In integral form: ∫
(θ̂ − θ0) f(y; θ0) dy = 0,

where f(y; θ0) is the likelihood function (or probability density).

Idea:
We will differentiate this identity with respect to θ (and evaluate at θ0)
to relate the variance of θ̂ to the information in the data.
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Step 2: Differentiate w.r.t. the Parameter
Differentiating the unbiasedness condition with respect to θ and then
evaluating at θ = θ0:

FOC: 0 =
∂

∂θ

∫
(θ̂ − θ) f(y; θ) dy

∣∣∣ θ=θ0 .

Applying the product rule inside the integral:
Both (θ̂ − θ) and f(y; θ) depend on θ, so when differentiating their product we
get:

∂

∂θ

[
(θ̂ − θ)f(y; θ)

]
= (θ̂ − θ)

∂f(y; θ)
∂θ

+ f(y; θ)∂(θ̂ − θ)

∂θ
.

Since θ̂ does not depend on θ, ∂(θ̂−θ)
∂θ

= −1.
So:

0 =

∫ [
(θ̂ − θ)

∂f(y; θ)
∂θ

− f(y; θ)
]
dy.

Simplify: Because
∫
f(y; θ) dy = 1 for all θ, differentiating gives∫ ∂f(y;θ)

∂θ
dy = 0. Hence only the first term remains:∫

(θ̂ − θ)
∂f(y; θ)

∂θ
dy = 0.

Evaluating at θ = θ0 gives∫
(θ̂ − θ0)

∂f(y; θ)
∂θ

∣∣∣
θ=θ0

dy = 0.
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Step 3: Expressing the Derivative via the Score Function

From the previous step:∫
(θ̂ − θ0)

∂f(y; θ)
∂θ

∣∣∣
θ=θ0

dy = 0.

Apply the chain rule to the density:
∂f(y; θ)

∂θ
= f(y; θ)

∂ ln f(y; θ)
∂θ

.

This works because differentiating ln f gives:
∂ ln f
∂θ

=
1

f
∂f
∂θ

⇒ ∂f
∂θ

= f
∂ ln f
∂θ

.

Substitute back into the integral:∫
(θ̂ − θ0) f(y; θ0)

∂ ln f(y; θ)
∂θ

∣∣∣
θ=θ0

dy = 0.

Interpretation: The term
∂ ln f(y; θ)

∂θ

∣∣∣
θ=θ0

is the score function at the
true parameter θ0. It measures how sensitive the log-likelihood is to
changes in θ around θ0.
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Step 4: Review of the Cauchy–Schwarz Inequality
Statement (Expectation Form):

Cauchy–Schwarz Inequality
For any random variables U and V with finite second moments,∣∣E[UV] ∣∣2 ≤ E[U2]E[V2].

Equivalent Integral Form: When U = u(y) and V = v(y) under density f(y) > 0,∣∣∣∣∫ u(y)v(y) f(y) dy
∣∣∣∣2 ≤

(∫
u(y)2f(y) dy

)(∫
v(y)2f(y) dy

)
.

Equality holds if and only if

u(y) = c v(y) for some constant c.

In our context (at θ0):

u(y) = θ̂ − θ0, v(y) = ∂ ln f(y; θ)
∂θ

∣∣∣
θ=θ0

,

with f(y; θ0) as the weighting function (i.e. the probability density under the
true parameter).
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Step 5: Applying the Cauchy–Schwarz Inequality
Apply the Cauchy–Schwarz inequality to

0 =

∫
(θ̂ − θ0) f(y; θ0)

∂ ln f(y; θ)
∂θ

∣∣∣
θ=θ0

dy.

By the Cauchy–Schwarz inequality:

02 ≤
[∫

(θ̂ − θ0)
2f(y; θ0) dy

] [∫ (
∂ ln f(y; θ)

∂θ

∣∣∣
θ=θ0

)2

f(y; θ0) dy

]
.

This inequality is trivially true, but equality holds only if

θ̂ − θ0 = c
∂ ln f(y; θ)

∂θ

∣∣∣
θ=θ0

for some constant c.

Interpretation: The efficient estimator (the one achieving equality in
the Cauchy–Schwarz bound) is proportional to the score function.
This insight motivates the next step, where we normalize the
proportionality constant to obtain the Cramér–Rao lower bound:

varθ0(θ̂) ≥
1

I(θ0)
, I(θ0) = Eθ0

[(
∂ ln f(y; θ)

∂θ

∣∣∣
θ=θ0

)2
]
.
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Step 6: Deriving the Cramér–Rao Lower Bound
So far we have:

Eθ0

[
(θ̂ − θ0)

∂ ln f(y; θ)
∂θ

∣∣∣
θ=θ0

]
= 0.

This holds directly from the unbiasedness condition. To obtain a meaningful
lower bound, we differentiate the unbiasedness condition itself:

Eθ[θ̂] = θ =⇒ ∂

∂θ
Eθ[θ̂] = 1.

Expanding the derivative:

∂

∂θ
Eθ[θ̂] =

∫
θ̂
∂f(y; θ)

∂θ
dy =

∫
θ̂ f(y; θ) ∂ ln f(y; θ)

∂θ
dy.

Subtracting θ times the derivative of
∫
f(y; θ) dy = 1 gives:

Eθ0

[
(θ̂ − θ0)

∂ ln f(y; θ)
∂θ

∣∣∣
θ0

]
= 1.

Now apply Cauchy–Schwarz:

12 ≤ Eθ0

[
(θ̂ − θ0)

2]Eθ0

[(
∂ ln f(y; θ)

∂θ

∣∣∣
θ0

)2
]
.
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Step 7: Finishing up

12 ≤ Eθ0

[
(θ̂ − θ0)

2
]
Eθ0

[(
∂ ln f(y; θ)

∂θ

∣∣∣
θ0

)2
]
.

Hence:

varθ0(θ̂) ≥
1

I(θ0)
, I(θ0) = Eθ0

[(
∂ ln f(y; θ)

∂θ

∣∣∣
θ0

)2
]
.

Equality condition:

θ̂ − θ0 = c
∂ ln f(y; θ)

∂θ

∣∣∣
θ0
, c =

1

I(θ0)
.
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Numerical Computation of the MLE
Many likelihoods (e.g. logit, Poisson, probit) have no closed-form
solution.

Instead, we solve the first-order condition g(θ) = ∂ℓ(θ)
∂θ = 0 iteratively.

Newton–Raphson update:

θ(k+1) = θ(k) −
[
H(θ(k))

]−1g(θ(k)),

where
g(θ) =

∂ℓ(θ)

∂θ
, H(θ) =

∂2ℓ(θ)

∂θ∂θ′
.

Interpretation:
▶ Move in the direction of steepest ascent (gradient g),
▶ scaled by curvature (H−1) — a local quadratic approximation.
▶ Repeat until change in ℓ(θ) or θ is negligible.

In 1D illustration:

θ(k+1) = θ(k) − ℓ′(θ(k))

ℓ′′(θ(k))
.

Visually: tangent to ℓ(θ) at θ(k) intersects the axis — next iterate.
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5.3: Likelihood-based Tests



Repetition of Distributions (B.4.2)

Chi-squared distribution:

▶ If z ∼ N (0, 1), then z2 ∼ χ2[1] (one d.f.)

▶ And
∑n

i=1 z2i ∼ χ2[n] (with n d.f.)

Note: variables must be independent.

F-distribution:

▶ χ2
ν1
/ν1

χ2
ν2
/ν2

∼ F[ν1, ν2]

Note: numerators/denominators independent.

t-distribution:

▶ z√
χ2
ν/ν

∼ t[ν]

▶ If t ∼ t[ν], then t2 ∼ F[1, ν]

33 / 69



Chi-Square Densities across Degrees of Freedom
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t Densities across Degrees of Freedom
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Review: Restrictions & How We Test Them



What do we mean by restrictions? (recap of Lecture 4)
Linear restrictions (OLS):

H0 : Rβ = q, R ∈ RJ×(K+1), q ∈ RJ, J = # of restrictions.

Examples:

▶ Zero restrictions (joint significance): β2 = · · · = βK = 0

▶ Equality restrictions: β1 = β3 or β2 + β3 = 1

Nonlinear restrictions (MLE world):

H0 : c(θ) = 0 with c : Rp → RJ.

Examples: odds-ratio equalities, elasticities at a point, variance
components equal, or p = 0.5 in a Bernoulli model.

Why this review now?
In MLE we assess H0 with likelihood-based tests (Wald/LR/Score).
They generalize the OLS t/F logic you saw in Lecture 4.
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Recap: Restricted vs. Unrestricted: geometry & loss of fit

Unrestricted OLS: β̂UR = (X′X)−1X′y, residuals eUR, SSRUR = e′UReUR.
Restricted OLS: impose Rβ = q,

β̂R = β̂UR − (X′X)−1R′[R(X′X)−1R′]−1
(Rβ̂UR − q),

residuals eR, SSRR = e′ReR.

Loss of fit & the F test (exact in classical homoskedastic normal
model):

F =

(
SSRR − SSRUR

)
/J

SSRUR/(n− K)
∼ F[J, n− K].

Intuition
If H0 is true, enforcing the restriction barely worsens fit ⇒ small loss
of fit ⇒ small F.
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Examples of c(θ) in Practice

Reminder: We test restrictions of the form

H0 : c(θ) = 0, c : Rp → RJ.

Typical examples across models:
Model / Context Restriction c(θ) and Interpretation

Linear Model c(θ) = Rθ − q: e.g. R = [0, 1,−1], q = 0 tests β2 = β3.

Bernoulli c(p) = p− 0.5: tests fairness of a coin (p = 0.5).

Cobb–Douglas c(θ) = α+ β − 1: constant returns to scale.

Elasticity restriction c(θ) = x′0β − 1: elasticity at x0 equals 1.

Nonlinear example c(θ) = θ1θ2 − 1: product of parameters equals 1.

Key idea
c(θ) can express any relationship among parameters — from simple linear
equalities to nonlinear or cross-equation constraints.
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Three Likelihood-Based Tests

Setup: Test H0 : c(θ) = 0.

▶ Wald test: Estimate model without restriction. Check if c(θ̂) is
”far” from zero given its variance.

▶ Likelihood Ratio test: Compare log-likelihoods with and without
restriction.

−2
(
ℓ(θ̂R)− ℓ(θ̂U)

)
→ χ2

J

▶ Score (LM) test: Estimate model under restriction. Test if slope
of log-likelihood at θ̂R is near zero.

What are restrictions?
Think of restrictions similar to our F-Test example in the OLS lectures.
Typically we use some linear restrictions on estimated parameters
and specify them using the likelihood, the score or the variance.
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From Nonlinear to Linear Restrictions

Goal: Approximate the nonlinear restriction c(θ) near the true
parameter θ0.

When c(·) is differentiable, a first-order Taylor expansion gives:

c(θ̂) ≈ c(θ0) +
∂c(θ0)
∂θ′

(θ̂ − θ0) = c(θ0) + G(θ0)(θ̂ − θ0),

where G(θ0) is the Jacobian of c(θ) at θ0.
Under H0 : c(θ0) = 0, the approximation simplifies to:

c(θ̂) ≈ G(θ0)(θ̂ − θ0).

Intuition
If θ̂ is close to θ0, c(θ̂) changes almost linearly with θ̂. The matrix G(θ0)
maps parameter uncertainty into uncertainty about the restrictions.

Note: By MLE invariance, c(θ̂) is the MLE of c(θ), so it inherits asymptotic normality
from θ̂. This justifies the next step on the next slide.
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Step 1: Use Asymptotic Normality of the MLE

Under standard regularity conditions, the MLE satisfies

√
n(θ̂ − θ0)

d−→ N (0, Vθ),

where Vθ = I(θ0)−1 is the asymptotic covariance matrix given
by the inverse of the Fisher information.

Interpretation:

θ̂ is approximately normal around θ0 with sampling variance
Vθ/n.
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Step 2: From θ̂ to c(θ̂) via the Delta Method

Linearization:

c(θ̂) ≈ c(θ0) + G(θ0)(θ̂ − θ0), where G(θ0) =
∂c(θ0)
∂θ′

.

Under H0 : c(θ0) = 0, this simplifies to

c(θ̂) ≈ G(θ0)(θ̂ − θ0).

Multiply by
√
n:

√
n c(θ̂) ≈ G(θ0)

√
n(θ̂ − θ0)

d−→ N
(
0, G(θ0)VθG(θ0)′

)
.

(This is an application of the delta method. Or equivalently, note that a linear
transformation of a multivariate normal vector is itself normal: if X∼N (0,V) and A is a
matrix, then AX∼N (0, AVA′). The covariance matrix is premultiplied and postmultiplied
by the transformation matrix.)
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Step 3: From Linearized Restrictions to the Wald Test
From Step 2:

√
n c(θ̂) d−→ N

(
0, Σc

)
, Σc = G(θ0)VθG(θ0)′.

Idea: To test H0 : c(θ0) = 0, we measure how far the estimated
restrictions c(θ̂) are from zero in standard deviation units.

Define the standardized quadratic form:

Wn = n c(θ̂)′ Σ−1
c c(θ̂).

Wald statistic:

Wn = n c(θ̂)′ [G(θ0) V̂θ G(θ0)′]−1c(θ̂) d−→ χ2
J.

Why is this χ2 dsitributed?

If Z ∼ N (0, IJ), then Z′Z ∼ χ2
J.

Here, Z = Σ
−1/2
c

√
n c(θ̂) is asymptotically standard normal, so its

quadratic form is asymptotically χ2
J.
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Anatomy of the Wald Statistic

W = nc(θ̂)′ [G(θ̂) V̂θ G(θ̂)′]−1 c(θ̂) d−→ χ2
J

Decomposition:
▶ c(θ̂) = Estimated restriction: how far the fitted model is from satisfying

H0.
▶ G(θ̂) V̂θ G(θ̂)′ = Sampling variance of c(θ̂) from the Delta method.
▶ Quadratic form = Standardizes the restriction by its variance and sums

across J restrictions.
Special case: for one restriction (J = 1),

W =
[c(θ̂)]2

v̂ar[c(θ̂)]
= z2.

Key idea
The Wald test is a multivariate and non-linear generalization of the familiar
“estimate divided by SE” logic.

(Note: The n appears in the general form because V̂θ is the variance of
√
n(θ̂ − θ0). In

the J = 1 case, this scaling is already built into v̂ar[c(θ̂)], so no explicit n is needed. )
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From General Restrictions to the Simple Wald Form

In general, the Wald test is based on nonlinear restrictions c(θ) = 0.
After linearization:

c(θ̂) ≈ G(θ0)(θ̂ − θ0).

For linear restrictions, this approximation is exact:

c(θ) = Rθ − q =⇒ G(θ) = R, c(θ̂) = Rθ̂ − q.

Then the Wald statistic simplifies to

W = n(Rθ̂ − q)′[R V̂θ R′]−1(Rθ̂ − q).
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Wald Test: Coin Example

ℓ(p) = y log p+ (n− y) log(1− p).
Null:

H0 : p = p0 (J = 1 Restrictions)
Here p0 denotes the hypothesized probability of success under H0

1. Unrestricted MLE: p̂ = y/n.

2. Variance: v̂ar(p̂) = p̂(1− p̂)
n

.

3. Wald statistic:

W =

(
p̂− p0

)2
v̂ar(p̂) =

n
(
p̂− p0

)2
p̂(1− p̂)

d−→ χ2
1.

Equivalent z-form: z =
p̂− p0√
p̂(1− p̂)/n

with W = z2.

4. Decision: Reject H0 if W > χ2
1,1−α.

Note: Wald evaluates the variance at the unrestricted estimate p̂.
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Wald Test: Coin Example (Numeric)
Data: n = 10, y = 7 ⇒ p̂ = 0.7.

Null hypothesis: H0 : p0 = 0.5. (Our coin is fair)

Variance of MLE:

v̂ar(p̂) = p̂(1− p̂)
n

=
0.7× 0.3

10
= 0.021.

Wald statistic:

W =
(p̂− p0)2

v̂ar(p̂) =
(0.7− 0.5)2

0.021
= 1.90.

Decision: Compare with χ2
1,0.95 = 3.84.

W = 1.90 < 3.84 ⇒ Fail to reject H0.

Intuition
With only 10 flips, we do not have enough evidence to reject fairness.
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Guess What? You Already Know the Wald Test
From the OLS section: we test

H0 : Rβ = q.

Using:

tj =
β̂j − 0

ŝe(β̂j)
, F =

(Rβ̂ − q)′[Rv̂ar(β̂)R′]−1(Rβ̂ − q)
J

.

In fact: these are Wald tests under the normal likelihood.

(Rβ̂ − q)′[Rv̂ar(β̂)R′]−1(Rβ̂ − q)︸ ︷︷ ︸
Wald statistic W

∼ χ2
J, t2 = W when J = 1.

Takeaway
Your familiar t- and F-tests are special cases of the general Wald test.
All we’re doing now is extending this logic to any likelihood model.
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Why the t- and F-Tests Are Wald Tests

Model: y = Xβ + ε, ε ∼ N (0, σ2I)
Wald statistic under normal likelihood:

W = (Rβ̂ − q)′[R(σ̂2(X′X)−1)R′]−1(Rβ̂ − q) ∼ χ2
J.

Textbook small sample adjustments:

s2 =
1

n− (K+ 1)
(y− Xβ̂)′(y− Xβ̂)

leads to exact t/F distributions in finite samples.

Takeaway
As n→∞, t2 → W and F · J → W. Same logic, different
parameterization.
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Historical Note: Abraham Wald (1902–1950)

Background:

▶ Born in Cluj (then Austro-Hungarian
Empire, now Romania) to a
German-speaking Jewish family.

▶ Studied mathematics in Vienna; emigrated
to the U.S. in 1938 and joined Columbia
University.

▶ Developed the Wald test, sequential
analysis, and fundamental results on MLE
efficiency.

▶ His WWII work on aircraft damage led to
the famous “missing bullet holes”
example of selection bias.
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Likelihood Ratio (LR): Principle

Goal: Test H0 : c(θ) = 0 (J restrictions).

MLEs: θ̂U (unrestricted), θ̂R (restricted).

Test statistic (sometimes named Wilks-Statistic):

LR = −2
(
ℓ(θ̂R)− ℓ(θ̂U)

)
d−→ χ2

J.

Interpretation: How much does imposing H0 reduce the best
attainable fit?

Key idea
If H0 is true, the restricted optimum is close to the unrestricted one,
so the log-likelihood drop is small (and LR is near 0).
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Likelihood Ratio: Coin Example (Step 1)

Goal: Test H0 : p = p0 against H1 : p ̸= p0.

Log-likelihood:

ℓ(p) = y log p+ (n− y) log(1− p)

Unrestricted MLE:

p̂ =
y
n

⇒ ℓ(p̂) = y log p̂+ (n− y) log(1− p̂)

Restricted under H0:

p = p0 ⇒ ℓ(p0) = y log p0 + (n− y) log(1− p0)

Test statistic:
LR = −2

[
ℓ(p0)− ℓ(p̂)

]
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Likelihood Ratio: Coin Example (Step 2)

Expand:

ℓ(p̂)−ℓ(p0) =
[
y log p̂+(n−y) log(1− p̂)

]
−
[
y log p0+(n−y) log(1−p0)

]
Group like terms:

ℓ(p̂)− ℓ(p0) = y(log p̂− log p0) + (n− y)
[

log(1− p̂)− log(1− p0)
]

Simplify using log rules:

ℓ(p̂)− ℓ(p0) = y log p̂
p0

+ (n− y) log 1− p̂
1− p0
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Likelihood Ratio: Coin Example (Step 3)

Plug into the LR definition:

LR = 2
[
ℓ(p̂)− ℓ(p0)

]
= 2

[
y log p̂

p0
+ (n− y) log 1− p̂

1− p0

]

With p̂ = y/n:

LR = 2

[
y logy/n

p0
+ (n− y) log1− y/n

1− p0

]

Asymptotic distribution:
LR d−→ χ2

1

Decision rule: Reject H0 if LR > χ2
1,1−α.

LR is invariant to reparameterizations; no variance estimator needed.
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Likelihood Ratio Test: Numeric Example

Data: n = 10, y = 7 ⇒ p̂ = 0.7. Null: H0 : p0 = 0.5.

Compute:

LR = 2

[
y log p̂

p0
+ (n− y) log 1− p̂

1− p0

]
.

LR = 2

[
7 log 0.7

0.5
+ 3 log 0.3

0.5

]
= 2(7×0.3365+3×(−0.511)) = 2(1.525) = 3.05.

Decision: Compare with χ2
1,0.95 = 3.84.

LR = 3.05 < 3.84 ⇒ Fail to reject H0.

Interpretation
Log-likelihood drops only slightly when p = 0.5 is imposed. The data
are consistent with a fair coin at 5% level.
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Historical Note: Samuel S. Wilks (1906–1964)

Background:

▶ American statistician, professor at
Princeton University.

▶ Introduced the Likelihood Ratio (LR) test
in the 1930s.

▶ Proved Wilks’ theorem:

−2(ℓrestricted − ℓunrestricted)
d−→ χ2

J.

▶ This result underlies virtually all
likelihood-based model comparison tests.

▶ the American Statistical Assoication
named the Wilks Memorial Award in his
honor.
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Score (LM): Principle

Goal: Test H0 : c(θ) = 0 (J restrictions) using only the restricted fit.

Score and information at the restricted estimate θ̂R:

S(θ) =
∂ℓ(θ)

∂θ
, I(θ) = E

[
−∂2ℓ(θ)

∂θ ∂θ′

]
.

Test statistic:

LM = S(θ̂R)′ I(θ̂R)−1 S(θ̂R)
d−→ χ2

J.

Key idea
If H0 is true, the slope (score) at the restricted optimum should be
near zero, once scaled by its information.
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Score (LM): Coin Example

1. Restricted point: evaluate at p0.

2. Score at p0:

S(p0) =
∂ℓ(p)
∂p

∣∣∣
p0

=
y− np0

p0(1− p0)
=

n(p̂− p0)
p0(1− p0)

.

3. Fisher information at p0:

I(p0) =
n

p0(1− p0)
.

4. LM statistic:

LM =
S(p0)2

I(p0)
=

n(p̂− p0)2

p0(1− p0)
d−→ χ2

1.

5. Decision: Reject H0 if LM > χ2
1,1−α.

Note: LM uses only the restricted fit (no unrestricted optimization
needed).
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Score (LM) Test: Numeric Example
Data: n = 10, y = 7 ⇒ p̂ = 0.7. Null: H0 : p0 = 0.5.

Score at p0:

S(p0) =
n(p̂− p0)
p0(1− p0)

=
10(0.7− 0.5)

0.5× 0.5
= 8.

Fisher information at p0:

I(p0) =
n

p0(1− p0)
=

10

0.25
= 40.

LM statistic:
LM =

S(p0)2

I(p0)
=

82

40
= 1.6.

Decision: LM = 1.6 < 3.84 ⇒ fail to reject H0.

Takeaway
All three tests (Wald, LR, LM) lead to the same qualitative conclusion.
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Historical Note: Calyampudi Radhakrishna Rao
(1920–2023)

Background:

▶ Indian statistician and one of the most
influential figures in 20th-century
statistics.

▶ Developed the Score (Rao) test, later
known as the Lagrange Multiplier (LM)
test.

▶ Based on the score function:

s(θ) =
∂ℓ(θ)

∂θ
.

▶ Rao showed that testing H0 can rely on
how large the score is at the restricted
MLE:

LM = s(θ̂0)′I(θ̂0)−1s(θ̂0)
d−→ χ2

J.
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5.4: OLS as Maximum Likelihood Problem



Linear Normal Model & Likelihood Setup

Model: y = Xβ + ϵ, with ϵ | X ∼ N (0, σ2In).

Parameters: θ = (β, σ2) (β ∈ RK+1, σ2 > 0).

Joint density (conditional on X):

f(y | X; θ) = (2πσ2)−n/2 exp
{
− 1

2σ2
(y− Xβ)′(y− Xβ)

}
.

Log-likelihood:

ℓ(β, σ2) = −n
2

log(2π)− n
2

logσ2 − 1

2σ2
(y− Xβ)′(y− Xβ).

Goal
Maximize ℓ(β, σ2) w.r.t. (β, σ2).

Our OLS Assumptions are hiding here in plain sight.
Can you spot them?
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FOC for β: OLS Normal Equations

Score for β:

∂ℓ

∂β
= − 1

2σ2
· (−2X′(y− Xβ)) =

1

σ2
X′(y− Xβ).

Set to zero:

X′(y− Xβ̂) = 0 ⇐⇒ X′X β̂ = X′y =⇒ β̂ = (X′X)−1X′y.

▶ This is exactly the OLS estimator.

▶ Requires full column rank: rank(X) = K+ 1 so (X′X)−1 exists.
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FOC for σ2: MLE of the Error Variance

Score for σ2:

∂ℓ

∂σ2
= −n

2

1

σ2
+

1

2(σ2)2
(y− Xβ)′(y− Xβ).

Set to zero and plug in b:

σ̂2
MLE =

1

n
(y− Xβ̂)′(y− Xβ̂) =

1

n

n∑
i=1

e2i .

▶ Note the denominator is n (finite-sample MLE).
The usual OLS unbiased estimator uses 1

n−(K+1)

∑
e2i . We did

not correct for β̂ being estimated!
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Concentrated Likelihood & Equivalence

Concentrate out σ2:

ℓ̃(β) = ℓ
(
β, σ̂2(β)

)
= −n

2
log(2π)− n

2
log

(
(y− Xβ)′(y− Xβ)

n

)
− n

2
.

Maximizing ℓ̃(β) is equivalent to minimizing

S(β) = (y− Xβ)′(y− Xβ) ⇒ OLS normal equations.

Takeaway
Under normality and linearity, MLE for β equals OLS. The difference
shows up only in the small-sample estimator of σ2.
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When MLE ̸= OLS (and What Replaces It)

If errors are non-spherical:

ε | X ∼ N (0, σ2Ω), Ω ̸= In,

then the log-likelihood maximizer for β is

bGLS = (X′Ω−1X)−1X′Ω−1y,

not OLS. Special case with known diagonal Ω gives WLS.

Takeaway:
OLS is the MLE if ε | X is N (0, σ2In). With heteroskedasticity or
autocorrelation, GLS is the MLE analogue.
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MLE, OLS, and GLS: Connecting the Dots

Implications for inference:
▶ Wald-type tests remain valid once the covariance is

replaced by V̂ar(β̂GLS) = σ̂2(X′Ω−1X)−1.
▶ With unknown Ω, use an estimate Ω̂

−→ Feasible GLS (FGLS).
▶ Alternatively, use robust (sandwich) standard errors for

OLS if efficiency is less important.

Takeaway:

Non-spherical errors do not invalidate the likelihood framework:
They simply change the MLE from OLS to GLS.
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Why Not Just Use Robust SEs Instead of GLS?

Valid point:
If the goal is inference on β, OLS with robust (sandwich) SEs already
works:

V̂ar(β̂OLS) = (X′X)−1X′Ω̂X(X′X)−1.

−→ Correct inference, same point estimate.

Then why study GLS?

▶ GLS is the MLE analogue under non-spherical errors.

▶ If Ω is correctly specified, GLS (or FGLS) has lower sampling
variability:

Var(β̂GLS) ⪯ Var(β̂OLS).

▶ Smaller sampling variance −→ tighter confidence intervals and
higher power.

▶ Also improves predictions and fitted values when Ω captures
real dependence.
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Wald Tests and Robust Covariances

W = (Rβ̂ − q)′[R V̂ar(β̂)R′]−1(Rβ̂ − q) d−→ χ2
J

Robust covariance estimate (Huber–Eicker–White)

V̂ar(β̂) = (X′X)−1X′Ω̂X(X′X)−1, Ω̂ = diag(ê2i )

▶ Same Wald logic as before, but robust to heteroskedasticity.

▶ Classical t and F tests are finite–sample Wald tests under
normal, homoskedastic errors.

Key idea
Inference = Wald + consistent variance estimate.
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Unified View: OLS, GLS, and Wald Testing

Assumptions on errors Estimator Covariance matrix Wald test uses

Normal, spherical OLS (MLE) σ2(X′X)−1 t, F tests
Non-spherical, known Ω GLS (MLE) σ2(X′Ω−1X)−1 General Wald
Heteroskedastic, unknown form OLS + HEW SEs (X′X)−1X′Ω̂X(X′X)−1 Robust Wald

Takeaway
OLS, GLS, and robust regression are all MLE-inspired.
Inference is unified through the Wald principle.
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