

Advanced Econometrics

04 OLS Properties

Eduard Brüll
Fall 2025

Advanced Econometrics

4. OLS Decomposition and Properties

4.1 The Frisch-Waugh-Lovell (FWL) Theorem

4.1.1 FWL Theorem in Equation Algebra

4.1.2 FWL Theorem in Matrix Notation

4.2 OLS Properties

4.2.1 Finite Sample Properties

4.2.2 Testing

4.2.3 Large Sample Properties

Literature: Greene ch. 2–4, Wooldridge ch. 3–4

4.1.1: FWL Theorem in Equation Algebra

$$y_i = \beta_0 + \beta_2 x_{2,i} + \beta_1 x_{1,i} + \varepsilon_i,$$

where $x_{2,i}$ is the regressor of interest and $x_{1,i}$ is a control.

Frisch-Waugh-Lovell (FWL): The coefficient on $x_{2,i}$ and the residuals from the full model are exactly recovered by either

(a) a regression using **partialled-out variables**:

$$\tilde{y}_i = \beta_0 + \beta_2 \tilde{x}_{2,i} + \varepsilon_i,$$

(b) a regression using **residualized variables**:

$$u_{y,i} = \beta_2 u_{2,i} + \varepsilon_i.$$

Why is the decomposition useful?

The Frisch-Waugh-Lovell theorem is useful because it lets us study the effect of one regressor while controlling for others in a simple way:

- ▶ We can visualize the relationship between y_i and $x_{2,i}$ in a two-dimensional scatter plot, once we have partialled out control variables.
- ▶ We can partial out high-dimensional controls (e.g. fixed effects) to reduce computation time. This is the principle behind commands such as `reghdfe` in Stata.
- ▶ We can separate two sources of variation:
 1. variation in $x_{2,i}$ explained by $x_{1,i}$, and
 2. how y_i responds to the part of $x_{2,i}$ orthogonal to $x_{1,i}$.
- ▶ It clarifies where omitted variable bias comes from, by showing exactly how the correlation between $x_{1,i}$ and $x_{2,i}$ matters.

How to partial out $x_{1,i}$

Step 1 (project $x_{2,i}$ on $x_{1,i}$):

$$x_{2,i} = \hat{\gamma}_0 + \hat{\gamma}_1 x_{1,i} + u_{2,i}, \quad u_{2,i} \perp x_{1,i}.$$

Step 2 (project y_i on $x_{1,i}$):

$$y_i = \hat{\delta}_0 + \hat{\delta}_1 x_{1,i} + u_{y,i}, \quad u_{y,i} \perp x_{1,i}.$$

Step 3 (define partialled-out variables, keep intercepts):

$$\tilde{x}_{2,i} := \hat{\gamma}_0 + u_{2,i}, \quad \tilde{y}_i := \hat{\delta}_0 + u_{y,i}.$$

Bivariate regression on adjusted variables:

$$\tilde{y}_i = \beta_0 + \beta_2 \tilde{x}_{2,i} + \varepsilon_i$$

Theorem

For the model

$$y_i = \beta_0 + \beta_2 x_{2,i} + \beta_1 x_{1,i} + \varepsilon_i,$$

the following two bivariate regressions yield the same β_2 and residuals as the full model:

$$\tilde{y}_i = \tilde{\beta}_0 + \beta_2 \tilde{x}_{2,i} + \tilde{\varepsilon}_i, \quad u_{y,i} = \beta_2 u_{2,i} + \varepsilon_i \quad (\text{no intercept}).$$

Hence, working with partialled-out variables (keeping intercepts) or with residuals (dropping intercepts) is equivalent for estimating β_2 and ε_i .

Partialled-out variables reproduce the full model

Show that

$$y_i = \beta_0 + \beta_2 x_{2,i} + \beta_1 x_{1,i} + \varepsilon_i \quad (1)$$

$$\tilde{y}_i = \beta_0 + \tilde{\beta}_1 \tilde{x}_{2,i} + \tilde{\varepsilon}_i. \quad (2)$$

Plug in the projections

$$y_i = \hat{\delta}_0 + \hat{\delta}_1 x_{1,i} + u_{y,i}, \quad x_{2,i} = \hat{\gamma}_0 + \hat{\gamma}_1 x_{1,i} + u_{2,i}$$

into equation (1):

$$\begin{aligned} y_i &= \hat{\delta}_0 + \hat{\delta}_1 x_{1,i} + u_{y,i} \\ &= \beta_0 + \beta_2(\hat{\gamma}_0 + \hat{\gamma}_1 x_{1,i} + u_{2,i}) + \beta_1 x_{1,i} + \varepsilon_i, \\ \tilde{y}_i &= \hat{\delta}_0 + u_{y,i} = \beta_0 + \beta_2(\hat{\gamma}_0 + u_{2,i}) + (\beta_2 \hat{\gamma}_1 - \hat{\delta}_1 + \beta_1) x_{1,i} + \varepsilon_i. \end{aligned}$$

Because we partialled out $x_{1,i}$ using OLS, $x_{1,i}$ is mechanically uncorrelated with $u_{2,i}$ and with $u_{y,i}$. Therefore the regression coefficient on the partialled-out variable $x_{1,i}$ is zero. The equation simplifies with $\tilde{x}_{2,i} = \hat{\gamma}_0 + u_{2,i}$ to

$$\tilde{y}_i = \hat{\delta}_0 + u_{y,i} = \beta_0 + \beta_2(\hat{\gamma}_0 + u_{2,i}) + \varepsilon_i.$$

Partialling out only $x_{2,i}$

If we partial out $x_{2,i}$ but not y_i , then

$$x_{2,i} = \gamma_0 + \gamma_1 x_{1,i} + u_{2,i}, \quad \tilde{x}_{2,i} = \gamma_0 + u_{2,i}.$$

The regression becomes

$$\begin{aligned} y_i &= \delta_0 + \delta_1 x_{1,i} + u_{y,i} \\ &= (\beta_0 + \delta_1 \bar{x}_1) + \beta_2 \tilde{x}_{2,i} + (\varepsilon_i + \delta_1 x_{1,i}) \\ &= \kappa + \beta_2 \tilde{x}_{2,i} + \epsilon_i. \end{aligned} \tag{1}$$

Here the intercept κ , the residuals ϵ_i , and the standard errors differ from the full model. But the slope β_2 on $\tilde{x}_{2,i}$ is unchanged.

Residualized variables

From the partialled-out form we have

$$\tilde{y}_i = \delta_0 + u_{y,i} = \beta_0 + \beta_2(\gamma_0 + u_{2,i}) + \varepsilon_i.$$

Subtract δ_0 :

$$u_{y,i} = \beta_0 - \delta_0 + \beta_2\gamma_0 + \beta_2u_{2,i} + \varepsilon_i.$$

But by the projection identities,

$$\beta_0 - \delta_0 + \beta_2\gamma_0 = 0,$$

so the constant term cancels.

Thus we obtain the residualized regression:

$$u_{y,i} = \beta_2u_{2,i} + \varepsilon_i.$$

This is the Frisch–Waugh–Lovell theorem in residualized form:
regressing $u_{y,i}$ on $u_{2,i}$ (without intercept) recovers the same β_2 as the full model.

4.1.2: FWL Theorem in Matrix Notation

Why P and M will keep showing up

OLS always decomposes the vector of outcomes \mathbf{y} into two orthogonal components:

$$\mathbf{y} = \underbrace{\mathbf{P}_{\mathbf{X}}\mathbf{y}}_{\text{projection onto regressors}} + \underbrace{\mathbf{M}_{\mathbf{X}}\mathbf{y}}_{\text{orthogonal residuals}},$$

where the matrices

$$\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}', \quad \mathbf{M}_{\mathbf{X}} = \mathbf{I} - \mathbf{P}_{\mathbf{X}}$$

have the following properties:

- ▶ $\mathbf{P}_{\mathbf{X}}$ is a **projection matrix** that maps \mathbf{y} onto the column space of \mathbf{X} .
- ▶ $\mathbf{M}_{\mathbf{X}}$ is a **residual-maker matrix** that removes all variation in \mathbf{y} explained by \mathbf{X} .
- ▶ Both are symmetric and idempotent: $\mathbf{P}_{\mathbf{X}}' = \mathbf{P}_{\mathbf{X}}$, $\mathbf{P}_{\mathbf{X}}^2 = \mathbf{P}_{\mathbf{X}}$, and similarly for $\mathbf{M}_{\mathbf{X}}$.

Key idea for FWL: If we split \mathbf{X} into $(\mathbf{X}_1, \mathbf{X}_2)$, we can first remove the influence of \mathbf{X}_1 using $\mathbf{M}_{\mathbf{X}_1}$, then run a regression on the part of \mathbf{X}_2 that is orthogonal to \mathbf{X}_1 .

Review: Partition of \mathbf{y}

The OLS model $\mathbf{y} = \mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{e}$ can be written in matrix form as:

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{e} = \mathbf{P}_X \mathbf{y} + \mathbf{M}_X \mathbf{y}.$$

This partitions \mathbf{y} into two orthogonal pieces:

- ▶ $\mathbf{P}_X \mathbf{y}$: The **fitted part**, spanned by columns of \mathbf{X}
- ▶ $\mathbf{M}_X \mathbf{y}$: The **residual part**, orthogonal to all columns of \mathbf{X}

Each term has a clear dimension and meaning:

- ▶ \mathbf{y} : $n \times 1$ vector of data
- ▶ \mathbf{P}_X : $n \times n$ projection matrix
- ▶ \mathbf{M}_X : $n \times n$ residual-maker matrix
- ▶ \mathbf{e} : $n \times 1$ vector of residuals

Orthogonality condition: $\mathbf{X}' \mathbf{e} = 0$. This is what ensures that OLS residuals are uncorrelated with the regressors.

Decomposing the Normal Equations

OLS minimizes $\|\mathbf{y} - \mathbf{X}\beta\|^2$, which leads to the normal equations

$$\mathbf{X}'\mathbf{X}\hat{\beta} = \mathbf{X}'\mathbf{y}.$$

If \mathbf{X} is composed of two sets of regressors $(\mathbf{X}_1, \mathbf{X}_2)$, we can write this in block form:

$$\begin{bmatrix} \mathbf{X}'_1 \mathbf{X}_1 & \mathbf{X}'_1 \mathbf{X}_2 \\ \mathbf{X}'_2 \mathbf{X}_1 & \mathbf{X}'_2 \mathbf{X}_2 \end{bmatrix} \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{X}'_1 \mathbf{y} \\ \mathbf{X}'_2 \mathbf{y} \end{bmatrix}.$$

This gives two matrix equations:

$$\mathbf{X}'_1 \mathbf{X}_1 \hat{\beta}_1 + \mathbf{X}'_1 \mathbf{X}_2 \hat{\beta}_2 = \mathbf{X}'_1 \mathbf{y} \quad (2)$$

$$\mathbf{X}'_2 \mathbf{X}_1 \hat{\beta}_1 + \mathbf{X}'_2 \mathbf{X}_2 \hat{\beta}_2 = \mathbf{X}'_2 \mathbf{y} \quad (3)$$

Goal: Derive an expression for $\hat{\beta}_2$ that no longer depends on $\hat{\beta}_1$. This is the essence of the FWL theorem in matrix form.

Step 1: Solve for $\hat{\beta}_1$

Starting from Equation (2):

$$\mathbf{X}'_1 \mathbf{X}_1 \hat{\beta}_1 + \mathbf{X}'_1 \mathbf{X}_2 \hat{\beta}_2 = \mathbf{X}'_1 \mathbf{y}.$$

We isolate $\hat{\beta}_1$:

$$\mathbf{X}'_1 \mathbf{X}_1 \hat{\beta}_1 = \mathbf{X}'_1 \mathbf{y} - \mathbf{X}'_1 \mathbf{X}_2 \hat{\beta}_2,$$

and multiply by $(\mathbf{X}'_1 \mathbf{X}_1)^{-1}$:

$$\hat{\beta}_1 = (\mathbf{X}'_1 \mathbf{X}_1)^{-1} \mathbf{X}'_1 \mathbf{y} - (\mathbf{X}'_1 \mathbf{X}_1)^{-1} \mathbf{X}'_1 \mathbf{X}_2 \hat{\beta}_2.$$

Interpretation: The first term is the coefficient from regressing \mathbf{y} on \mathbf{X}_1 only; the second adjusts for how \mathbf{X}_2 overlaps with \mathbf{X}_1 .

Step 2: Substitute into the second equation

Plug the expression for $\hat{\beta}_1$ into Equation (3):

$$\mathbf{X}'_2 \mathbf{X}_1 \hat{\beta}_1 + \mathbf{X}'_2 \mathbf{X}_2 \hat{\beta}_2 = \mathbf{X}'_2 \mathbf{y}.$$

Substitute $\hat{\beta}_1 = (\mathbf{X}'_1 \mathbf{X}_1)^{-1} \mathbf{X}'_1 (\mathbf{y} - \mathbf{X}_2 \hat{\beta}_2)$:

$$\mathbf{X}'_2 \mathbf{X}_1 (\mathbf{X}'_1 \mathbf{X}_1)^{-1} \mathbf{X}'_1 (\mathbf{y} - \mathbf{X}_2 \hat{\beta}_2) + \mathbf{X}'_2 \mathbf{X}_2 \hat{\beta}_2 = \mathbf{X}'_2 \mathbf{y}.$$

Expand:

$$\mathbf{X}'_2 \mathbf{X}_1 (\mathbf{X}'_1 \mathbf{X}_1)^{-1} \mathbf{X}'_1 \mathbf{y} - \mathbf{X}'_2 \mathbf{X}_1 (\mathbf{X}'_1 \mathbf{X}_1)^{-1} \mathbf{X}'_1 \mathbf{X}_2 \hat{\beta}_2 + \mathbf{X}'_2 \mathbf{X}_2 \hat{\beta}_2 = \mathbf{X}'_2 \mathbf{y}.$$

Next step: Recognize a familiar projection matrix inside this expression.

Step 3: Identify the projection matrix

The term $\mathbf{X}_1(\mathbf{X}'_1\mathbf{X}_1)^{-1}\mathbf{X}'_1$ is the projection matrix \mathbf{P}_{X_1} . Use this to rewrite:

$$\mathbf{X}'_2\mathbf{P}_{X_1}\mathbf{y} - \mathbf{X}'_2\mathbf{P}_{X_1}\mathbf{X}_2\hat{\beta}_2 + \mathbf{X}'_2\mathbf{X}_2\hat{\beta}_2 = \mathbf{X}'_2\mathbf{y}.$$

Now add and subtract $\mathbf{X}'_2\mathbf{I}\mathbf{X}_2\hat{\beta}_2$ to reveal an $(\mathbf{I} - \mathbf{P}_{X_1})$ structure:

$$\mathbf{X}'_2(\mathbf{I} - \mathbf{P}_{X_1})\mathbf{y} = \mathbf{X}'_2(\mathbf{I} - \mathbf{P}_{X_1})\mathbf{X}_2\hat{\beta}_2.$$

Recognize $(\mathbf{I} - \mathbf{P}_{X_1})$ as the residual-maker matrix \mathbf{M}_{X_1} :

$$\mathbf{X}'_2\mathbf{M}_{X_1}\mathbf{y} = \mathbf{X}'_2\mathbf{M}_{X_1}\mathbf{X}_2\hat{\beta}_2.$$

Finally, solve for $\hat{\beta}_2$:

$$\hat{\beta}_2 = (\mathbf{X}'_2\mathbf{M}_{X_1}\mathbf{X}_2)^{-1}\mathbf{X}'_2\mathbf{M}_{X_1}\mathbf{y}.$$

Step 4: Interpretation of the result

We have derived the key matrix formula for the FWL theorem:

$$\hat{\beta}_2 = (\mathbf{X}'_2 \mathbf{M}_{X_1} \mathbf{X}_2)^{-1} \mathbf{X}'_2 \mathbf{M}_{X_1} \mathbf{y}.$$

Note that \mathbf{M}_{X_1} is symmetric and idempotent:

$$\mathbf{M}_{X_1} = \mathbf{M}_{X_1} \mathbf{M}_{X_1} = \mathbf{M}'_{X_1} \mathbf{M}_{X_1}.$$

Thus we can rewrite:

$$\hat{\beta}_2 = ((\mathbf{M}_{X_1} \mathbf{X}_2)' (\mathbf{M}_{X_1} \mathbf{X}_2))^{-1} (\mathbf{M}_{X_1} \mathbf{X}_2)' (\mathbf{M}_{X_1} \mathbf{y}).$$

Interpretation:

- ▶ $\tilde{\mathbf{X}}_2 = \mathbf{M}_{X_1} \mathbf{X}_2$: residuals from regressing \mathbf{X}_2 on \mathbf{X}_1 .
- ▶ $\tilde{\mathbf{y}} = \mathbf{M}_{X_1} \mathbf{y}$: residuals from regressing \mathbf{y} on \mathbf{X}_1 .

So we can write simply:

$$\hat{\beta}_2 = (\tilde{\mathbf{X}}'_2 \tilde{\mathbf{X}}_2)^{-1} \tilde{\mathbf{X}}'_2 \tilde{\mathbf{y}}.$$

What FWL tells us about omitted variable bias

FWL gives a clear view of what happens when we omit relevant regressors.

Setup: Partition the true regressor matrix as

$$X = [X_1 \ X_2],$$

where X_1 are included and X_2 are omitted variables in the short regression

$$y = X_1 \tilde{\beta}_1 + \tilde{\varepsilon}.$$

By the Frisch–Waugh–Lovell theorem,

$$\tilde{\beta}_1 = (X_1' X_1)^{-1} X_1' y = \beta_1 + (X_1' X_1)^{-1} X_1' X_2 \beta_2$$

Interpretation:

- ▶ The bias term $(X_1' X_1)^{-1} X_1' X_2 \beta_2$ arises from projecting X_2 onto X_1 .
- ▶ Omitted variables X_2 matter for $\tilde{\beta}_1$ only if both:

$X_1' X_2 \neq 0$ (there is correlation between regressors)

$\beta_2 \neq 0$ (omitted variables matter for y).

Simplified Bivariate Perspective

Consider the true model with one included and one omitted regressor:

$$y_i = \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i.$$

If we omit $x_{2,i}$ and estimate

$$y_i = \tilde{\beta}_1 x_{1,i} + \tilde{\varepsilon}_i,$$

the FWL decomposition implies

$$\tilde{\beta}_1 = \beta_1 + \beta_2 \frac{\text{cov}(x_1, x_2)}{\text{var}(x_1)}.$$

Interpretation:

- ▶ The second term is the **omitted variable bias**.
- ▶ Bias is positive if x_1 and x_2 move together and both raise y .
- ▶ Bias is zero if either:

$$\text{cov}(x_1, x_2) = 0 \quad \text{or} \quad \beta_2 = 0.$$

FWL perspective on OVB: Projections

FWL shows: Bias is just the influence of X_2 transmitted through its correlation with X_1 . We can also show it as projection problem.

Step 1: Regress X_2 on X_1 :

$$X_2 = P_{X_1}X_2 + M_{X_1}X_2,$$

where $P_{X_1}X_2$ is the part of X_2 explained by X_1 .

Step 2: The short regression omits $M_{X_1}X_2$, but keeps $P_{X_1}X_2$ through correlation with X_1 .

Implication:

- ▶ The bias equals the effect of the omitted variable (β_2) times how strongly X_2 is embedded in X_1 .
- ▶ When X_1 and X_2 are orthogonal, $P_{X_1}X_2 = 0$ and no bias arises.

4.2: OLS Properties

Under Assumptions A1–A5 (linearity, rank, exogeneity, spherical errors, nonstochastic X) the following holds for OLS:

- ▶ **Unbiasedness:**

$$E[\hat{\beta}|X] = \beta$$

- ▶ **Variance:**

$$\text{Var}[\hat{\beta}|X] = \sigma^2(X'X)^{-1}$$

- ▶ **Gauss–Markov Theorem:** Among all linear unbiased estimators, $\hat{\beta}$ has the smallest variance (**BLUE**).
- ▶ **Orthogonality:** $\hat{\beta}$ is uncorrelated with residuals e ; fitted values \hat{y} and residuals e are orthogonal.

Recall: With A1–A5 we have

- ▶ OLS is unbiased
- ▶ Variance formula: $\text{Var}[\hat{\beta}|X] = \sigma^2(X'X)^{-1}$
- ▶ OLS is BLUE (Gauss–Markov theorem)

Additional Assumption A6:

$$\varepsilon|X \sim \mathcal{N}(0, \sigma^2 I_n).$$

Implications for finite-sample distribution:

- ▶ $\hat{\beta}|X \sim \mathcal{N}(\beta, \sigma^2(X'X)^{-1})$
- ▶ t- and F-statistics have exact finite-sample distributions

Interpretation: A6 is not needed for unbiasedness or efficiency. But it delivers exact finite-sample inference.

4.2.1: Finite Sample Properties

Unbiased Estimation

The least squares estimator can be written as function of the population regression line:

$$\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + \varepsilon) = \beta + (X'X)^{-1}X'\varepsilon$$

Now, taking the conditional expectation yields

$$\begin{aligned} E[\hat{\beta}|X] &= \beta + E[(X'X)^{-1}X'\varepsilon | X] = \beta + (X'X)^{-1}X'E[\varepsilon|X] \\ &= \beta \quad \text{by assumption A3: Exogeneity} \end{aligned}$$

Applying the law of iterated expectation shows

$$E[\hat{\beta}] = E[E[\hat{\beta}|X]] = E[\beta] = \beta$$

Variance of Least Squares Estimator

$$\hat{\beta} = \beta + (X'X)^{-1}X'\varepsilon$$

The **conditional** variance of $\hat{\beta}$ is

$$\begin{aligned}\text{Var}[\hat{\beta} | X] &= E\left[(\hat{\beta} - E[\hat{\beta}|X])(\hat{\beta} - E[\hat{\beta}|X])' \mid X\right] \\ &= E\left[(\hat{\beta} - \beta)(\hat{\beta} - \beta)' \mid X\right] \quad (\text{since } E[\hat{\beta}|X] = \beta \text{ by A3}) \\ &= E\left[((X'X)^{-1}X'\varepsilon)((X'X)^{-1}X'\varepsilon)' \mid X\right] \\ &= E\left[(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1} \mid X\right] \\ &= (X'X)^{-1}X'E[\varepsilon\varepsilon'|X]X(X'X)^{-1} \\ &= (X'X)^{-1}X'\sigma^2I_nX(X'X)^{-1} \quad \text{by Assumption A4: Homoskedasticity} \\ &= \sigma^2(X'X)^{-1}.\end{aligned}$$

Law of Total Variance

For any random vector Z and information set X ,

$$\text{Var}[Z] = E[\text{Var}[Z|X]] + \text{Var}(E[Z|X]).$$

Proof:

$$\begin{aligned}\text{Var}[Z] &= E[(Z - E[Z])(Z - E[Z))'] \\ &= E[(Z - E[Z|X] + E[Z|X] - E[Z])(Z - E[Z|X] + E[Z|X] - E[Z))'] \\ &= E[(Z - E[Z|X])(Z - E[Z|X))'] \\ &\quad + E[(E[Z|X] - E[Z])(E[Z|X] - E[Z))'] \\ &\quad + 2E[(Z - E[Z|X])(E[Z|X] - E[Z))'] .\end{aligned}$$

The cross term vanishes because $E[Z - E[Z|X] | X] = 0$. Thus,

$$\text{Var}[Z] = E[\text{Var}[Z|X]] + \text{Var}(E[Z|X]).$$

Interpretation: The total variance equals the average of conditional variances plus the variance of conditional means.

Unconditional Variance of OLS Estimator

We still have to derive the **unconditional** variance of $\hat{\beta}$. By the law of total variance,

$$\begin{aligned}\text{Var}[\hat{\beta}] &= E[\text{Var}[\hat{\beta}|X]] + \text{Var}(E[\hat{\beta}|X]) \\ &= E[\sigma^2(X'X)^{-1}] + \text{Var}[\beta] \\ &= \sigma^2 E[(X'X)^{-1}],\end{aligned}$$

since population parameter β is nonrandom.

Intuition for OLS Variance

Key idea: The variance of OLS reflects how much $\hat{\beta}$ would change if we drew a new sample.

- ▶ Residual variance σ^2 = “background noise” in y .
- ▶ Matrix $(X'X)^{-1}$ = “information in X ”:
 - ▶ More spread in $X \Rightarrow (X'X)$ larger \Rightarrow variance of $\hat{\beta}$ smaller.
 - ▶ Little variation or multicollinearity $\Rightarrow (X'X)^{-1}$ large \Rightarrow variance of $\hat{\beta}$ large.
- ▶ Together:

$$\text{Var}[\hat{\beta}|X] = \sigma^2(X'X)^{-1}$$

balances signal in regressors vs. noise in errors.

Analogy: Estimating a mean: more observations \Rightarrow smaller variance. In regression, it’s the same idea, but “information” comes from regressor variation.

$$X'X = \begin{bmatrix} n & \sum_i x_{i1} & \sum_i x_{i2} & \cdots & \sum_i x_{iK} \\ \sum_i x_{i1} & \sum_i x_{i1}^2 & \sum_i x_{i1}x_{i2} & \cdots & \sum_i x_{i1}x_{iK} \\ \sum_i x_{i2} & \sum_i x_{i2}x_{i1} & \sum_i x_{i2}^2 & \cdots & \sum_i x_{i2}x_{iK} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_i x_{iK} & \sum_i x_{iK}x_{i1} & \sum_i x_{iK}x_{i2} & \cdots & \sum_i x_{iK}^2 \end{bmatrix}.$$

Intuition:

- ▶ $X'X/n$ collects **raw (uncentered) second moments** of the regressors. Although it's not yet in the familiar form, it fully encodes the **variances and covariances** of the X .
- ▶ Centering would just adjust by the means.

$$X'y = \begin{bmatrix} \sum_i y_i \\ \sum_i x_{i1}y_i \\ \sum_i x_{i2}y_i \\ \vdots \\ \sum_i x_{ik}y_i \end{bmatrix}.$$

Intuition:

- ▶ $X'y$ collects the **raw (uncentered) cross-moments** between each regressor and the outcome y .
- ▶ This mirrors the structure of $X'X$, but for the **relationship between X and y** .
- ▶ Centering would only adjust for means, not the underlying covariance structure.

The Variance-Weights Matrix $(X'X)^{-1}$ in a bivariate case

For the bivariate model with intercept

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

we have

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad X'X = \begin{bmatrix} n & \sum_i x_i \\ \sum_i x_i & \sum_i x_i^2 \end{bmatrix}.$$

The inverse is

$$(X'X)^{-1} = \frac{1}{n \sum_i x_i^2 - (\sum_i x_i)^2} \begin{bmatrix} \sum_i x_i^2 & -\sum_i x_i \\ -\sum_i x_i & n \end{bmatrix}.$$

Thus, the covariance matrix of OLS estimates is

$$\text{Var} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = \sigma^2 (X'X)^{-1} = \frac{\sigma^2}{n \sum_i x_i^2 - (\sum_i x_i)^2} \begin{bmatrix} \sum_i x_i^2 & -\sum_i x_i \\ -\sum_i x_i & n \end{bmatrix}.$$

The Variance-Weights Matrix $(X'X)^{-1}$ in a bivariate case

Entries:

$$\text{Var}[\hat{\beta}_0 | X] = \sigma^2 \frac{\sum_i x_i^2}{n \sum_i x_i^2 - (\sum_i x_i)^2},$$

$$\text{Var}[\hat{\beta}_1 | X] = \sigma^2 \frac{n}{n \sum_i x_i^2 - (\sum_i x_i)^2},$$

$$\text{Cov}[\hat{\beta}_0, \hat{\beta}_1 | X] = -\sigma^2 \frac{\sum_i x_i}{n \sum_i x_i^2 - (\sum_i x_i)^2}.$$

- ▶ The denominator $n \sum_i x_i^2 - (\sum_i x_i)^2$ reflects the total variation of x_i .
 - ▶ More dispersion in $x_i \Rightarrow$ smaller variances of both estimates.
- ▶ The slope variance can be rewritten as $\text{Var}[\hat{\beta}_1 | X] = \sigma^2 / \sum_i (x_i - \bar{x})^2$.
 - ▶ $\hat{\beta}_1$ is estimated more precisely when x_i are spread out.
- ▶ The intercept variance depends on both spread and mean of x_i .
 - ▶ If \bar{x} is far from 0, $\text{Var}[\hat{\beta}_0 | X]$ increases.
- ▶ The covariance term is negative: $\text{Cov}[\hat{\beta}_0, \hat{\beta}_1 | X] < 0$.
 - ▶ When the slope rises, the intercept tends to fall to fit the same line.

Gauss–Markov Theorem (OLS is BLUE)

We have shown that $\hat{\beta}$ is a conditionally (and unconditionally) **unbiased** estimator of β . Moreover, $\hat{\beta}$ is a **linear** estimator, because it is linear in parameters (Assumption A1).

Gauss–Markov Theorem

In the classical linear regression model with regressor matrix X , the least squares estimator $\hat{\beta}$ is **efficient** in the class of linear (conditionally) unbiased estimators.

Formally, let b_0 denote any other linear and conditionally unbiased estimator of β . The Gauss–Markov Theorem states that:

$$\text{Var}[b_0|X] - \text{Var}[\hat{\beta}|X] \text{ is positive semidefinite.}$$

Interpretation: This means that $\text{Var}[\hat{\beta}|X]$ is the **smallest variance matrix** in this class. In other words, OLS has **minimal variance** \Rightarrow the Best in **BLUE**.

Gauss–Markov Theorem: Proof (Setup)

Goal: Compare OLS $\hat{\beta} = (X'X)^{-1}X'y$ with any other **linear, unbiased** estimator of β .

Step 1: Write the most general linear estimator.

$$b_0 = Cy, \quad \text{where } C \text{ is some } (K+1) \times n \text{ matrix of constants.}$$

This is the most general way to express an estimator that is **linear in the data** y . OLS corresponds to the specific choice $C = (X'X)^{-1}X'$.

Step 2: Impose unbiasedness.

$$E[b_0|X] = E[Cy|X] = C E[y|X] = CX\beta.$$

For b_0 to be unbiased, this must equal β for all possible β :

$$CX\beta = \beta \quad \text{for all } \beta \quad \Rightarrow \quad CX = I_{K+1}.$$

This condition ensures b_0 gives the right average value.

\Rightarrow Any linear, unbiased estimator of β must satisfy $CX = I$. Next, we show that OLS minimizes its variance among all such estimators.

Gauss–Markov Theorem: Proof

Recap so far: We consider any linear unbiased estimator $b_0 = Cy$ satisfying $CX = I_{K+1}$.

Step 3: Compute variances (under A4: spherical errors).

$$\text{Var}[y|X] = \sigma^2 I_n \quad (\text{homoskedastic and uncorrelated errors}).$$

$$\begin{aligned}\text{Var}[b_0|X] &= C \text{Var}[y|X] C' \\ &= C (\sigma^2 I_n) C' \quad (\text{A4: homoskedasticity \& no autocorrelation}) \\ &= \sigma^2 CC', \\ &= \sigma^2 CC',\end{aligned}$$

$$\text{Var}[\hat{\beta}|X] = \sigma^2 (X'X)^{-1}.$$

Next: Compare these two variances by expressing C as the OLS part plus a “correction” that keeps unbiasedness intact.

Gauss–Markov Theorem: Proof (continued)

Step 4: Express C as OLS part plus deviation.

Let

$$D := C - (X'X)^{-1}X'.$$

Since both C and $(X'X)^{-1}X'$ satisfy $CX = (X'X)^{-1}X'X = I$, we have

$$DX = 0.$$

⇒ The extra term D does not affect unbiasedness (because it drops out when multiplied by X).

$$C := (X'X)^{-1}X' + D$$

Gauss–Markov Theorem: Proof (contd.)

Step 5: Show that the variance difference is positive semidefinite.

$$\begin{aligned} CC' &= ((X'X)^{-1}X' + D)((X'X)^{-1}X' + D)' \\ &= (X'X)^{-1} + (X'X)^{-1}X'D' + DX(X'X)^{-1} + DD' \\ &= (X'X)^{-1} + DD' \quad (\text{since } DX = 0), \end{aligned}$$

so

$$\text{Var}[b_0|X] - \text{Var}[\hat{\beta}|X] = \sigma^2(CC' - (X'X)^{-1}) = \sigma^2 DD'.$$

Gauss–Markov Theorem: Conclusion

- ▶ Any linear, unbiased estimator can be written as

$$b_0 = (X'X)^{-1}X'y + Dy, \quad \text{where } DX = 0.$$

- ▶ Its conditional variance is

$$\text{Var}[b_0|X] = \sigma^2(X'X)^{-1} + \sigma^2 DD'.$$

Since $\sigma^2 DD'$ is positive semidefinite:

$$\forall a, \quad a'(\sigma^2 DD')a = \sigma^2 \|D'a\|^2 \geq 0.$$

(Because a squared norm can never be negative.)

Under A1–A4 (classical linear regression model):

$\hat{\beta} = (X'X)^{-1}X'y$ has the smallest variance among all linear unbiased estimators.

OLS is **BLUE** \Rightarrow **Best (minimum variance), Linear, and Unbiased.**

Intuition:

Any other linear unbiased estimator adds a “correction” Dy that does not change the mean, but increases the variance by $\sigma^2 DD'$.

Estimating the Error Variance

To compute $\text{Var}[\hat{\beta} | X] = \sigma^2(X'X)^{-1}$ we need an estimate of the unknown error variance σ^2 .

Idea: Use the residuals $e = y - \hat{y}$ as proxies for the true errors.

A conditionally unbiased estimator for σ^2 is given by:

$$s^2 = \frac{e'e}{n - (K + 1)}.$$

Hence our estimate for $\text{Var}[\hat{\beta} | X]$ is

$$\widehat{\text{Var}}[\hat{\beta} | X] = s^2(X'X)^{-1}.$$

Conditional Unbiasedness of s^2

Recall the model:

$$y = X\beta + \varepsilon, \quad E[\varepsilon | X] = 0, \quad \text{Var}[\varepsilon | X] = \sigma^2 I_n.$$

OLS residuals are

$$\mathbf{e} = \mathbf{y} - \mathbf{X}\hat{\beta} = (\mathbf{I}_n - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}')\mathbf{y} = \mathbf{M}\mathbf{y}.$$

Since $\mathbf{y} = \mathbf{X}\beta + \varepsilon$,

$$\mathbf{e} = \mathbf{M}(\mathbf{X}\beta + \varepsilon) = \mathbf{M}\mathbf{X}\beta + \mathbf{M}\varepsilon = \mathbf{M}\varepsilon,$$

because $\mathbf{M}\mathbf{X} = 0$.

The total squared residuals measure remaining variation:

$$\mathbf{e}'\mathbf{e} = (\mathbf{M}\varepsilon)'(\mathbf{M}\varepsilon) = \varepsilon'\mathbf{M}'\mathbf{M}\varepsilon = \varepsilon'\mathbf{M}\varepsilon,$$

since $\mathbf{M}'\mathbf{M} = \mathbf{M}$.

To estimate the unknown variance $\sigma^2 = E[\varepsilon_i^2]$, we average the squared residuals over the $n - (K + 1)$ independent directions left after fitting $K + 1$ parameters:

$$s^2 = \frac{\mathbf{e}'\mathbf{e}}{n - (K + 1)} = \frac{\varepsilon'\mathbf{M}\varepsilon}{n - (K + 1)}.$$

Proving Conditional Unbiasedness of s^2

We use two key trace facts for any scalar $a'Ba$:

$$a'Ba = \text{tr}(a'Ba) = \text{tr}(Baa'),$$

where a is $(n \times 1)$ and B is $(n \times n)$. The rule $\text{tr}(AB) = \text{tr}(BA)$ allows cyclic permutation inside the trace.)

Compute the conditional expectation of the residual sum of squares:

$$E[e'e | X] = E[\varepsilon'M\varepsilon | X] = \text{tr}(M E[\varepsilon\varepsilon' | X]).$$

Here:

- ▶ ε is $(n \times 1)$: The vector of disturbances,
- ▶ M is $(n \times n)$: The residual-maker matrix
- ▶ So $\varepsilon'M\varepsilon$ is a scalar

Proving Conditional Unbiasedness of s^2

By **Assumption A4 (spherical errors)**:

$$E[\varepsilon\varepsilon' | X] = \sigma^2 I_n,$$

so the conditional covariance of ε is proportional to the identity.

Substitute and use $\text{tr}(M) = n - (K + 1)$:

$$E[\mathbf{e}'\mathbf{e} | X] = \text{tr}(M E[\varepsilon\varepsilon' | X]) = \sigma^2 \text{tr}(M) = \sigma^2[n - (K + 1)].$$

Therefore,

$$E[s^2 | X] = \frac{1}{n - (K + 1)} E[\mathbf{e}'\mathbf{e} | X] = \sigma^2.$$

Conclusion: $E[s^2 | X] = \sigma^2 \Rightarrow s^2$ is conditionally unbiased.

We now make use of Assumption A6:

$$\varepsilon | X \sim \mathcal{N}(0, \sigma^2 I_n).$$

Theorem (see Greene, Thm. B-103)

If $z \sim \mathcal{N}(\mu, \Sigma)$ then

$$Az + d \sim \mathcal{N}(A\mu + d, A\Sigma A').$$

We apply this theorem to

$$\hat{\beta} = \beta + (X'X)^{-1}X'\varepsilon.$$

With $A = (X'X)^{-1}X'$ and conditional on X , it follows that

$$\hat{\beta} | X \sim \mathcal{N}(\beta, \sigma^2 (X'X)^{-1}).$$

And for each element of $\hat{\beta}$:

$$\hat{\beta}_k | X \sim \mathcal{N}(\beta_k, \sigma^2 [(X'X)^{-1}]_{kk}).$$

4.2.2 Testing

Testing a Hypothesis about a Coefficient

We want to test

$$H_0 : \beta_k = \beta_{k,0}.$$

Under the normality assumption we can make use of the following test statistic:

$$z_k = \frac{\hat{\beta}_k - \beta_{k,0}}{\sqrt{\sigma^2 (X'X)_{kk}^{-1}}}.$$

Conditionally on X , this statistic is standard normal:

$$z_k | X \sim \mathcal{N}(0, 1).$$

Problem: We do not observe σ^2 . What is the distribution of the test statistic if we replace σ^2 by s^2 ?

Theorem (see Greene, Thm. B.8)

If $z \sim \mathcal{N}(0, I)$ and A is idempotent, then $z'Az$ has a chi-squared distribution with degrees of freedom equal to the rank of A .

We apply this theorem to

$$\frac{(n - (K + 1))s^2}{\sigma^2} = \frac{\mathbf{e}'\mathbf{e}}{\sigma^2} = \left(\frac{\varepsilon}{\sigma}\right)' M \left(\frac{\varepsilon}{\sigma}\right),$$

which conditionally on X is

$$\chi^2(n - (K + 1)).$$

Theorem (see Greene, Thm. 4.4)

If ε is normally distributed, then the least squares estimator $\hat{\beta}$ is statistically independent of the residual vector e and therefore of all functions of e , including s^2 .

Independence of Numerator and Denominator

The statistic:

$$t_k = \frac{\hat{\beta}_k - \beta_{k,0}}{\sqrt{s^2(X'X)_{kk}^{-1}}}.$$

follows a t -distribution. We need two ingredients to show this:

1. the numerator and denominator have the right **marginal distributions**, and
2. they are **independent**.

We already know that

$$\frac{(n - (K + 1))s^2}{\sigma^2} = \left(\frac{\varepsilon}{\sigma}\right)' M \left(\frac{\varepsilon}{\sigma}\right) \sim \chi^2(n - (K + 1)).$$

Next: Are

$$\frac{\hat{\beta}_k - \beta_k}{\sigma \sqrt{(X'X)_{kk}^{-1}}} \quad \text{and} \quad \frac{s^2}{\sigma^2}$$

independent?

Start from the linear model

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2 I).$$

Then

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\varepsilon,$$

and

$$\mathbf{e} = \mathbf{M}\mathbf{y} = \mathbf{M}\varepsilon, \quad \mathbf{M} = \mathbf{I} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'.$$

Hence, the random parts of the t -statistic are:

$$\frac{\hat{\beta} - \beta}{\sigma} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\frac{\varepsilon}{\sigma}, \quad \frac{\mathbf{e}'\mathbf{e}}{\sigma^2} = \left(\frac{\varepsilon}{\sigma}\right)' \mathbf{M} \left(\frac{\varepsilon}{\sigma}\right).$$

Both are functions of the same random vector ε/σ , so we test independence via their covariance.

The denominator s^2 is a quadratic form in ε :

$$s^2 = \frac{1}{n - (K + 1)} \varepsilon' M \varepsilon.$$

The numerator $(\hat{\beta} - \beta)$ is a linear form in ε :

$$\hat{\beta} - \beta = (X' X)^{-1} X' \varepsilon.$$

For multivariate normal ε , a standard result says:

Lemma (Greene, Thm. B.12)

If $A\varepsilon$ and $B\varepsilon$ are jointly normal and $E[(A\varepsilon)(B\varepsilon)'] = 0$, then $A\varepsilon$ and $(B\varepsilon)'(B\varepsilon)$ are independent.

Hence we only need to check that the **linear components** generating numerator and denominator are uncorrelated:

$$\text{Cov}\left(M\frac{\varepsilon}{\sigma}, \frac{\hat{\beta} - \beta}{\sigma}\right) = 0.$$

Substitute $\frac{\hat{\beta} - \beta}{\sigma} = (X'X)^{-1}X'\frac{\varepsilon}{\sigma}$:

$$E\left[M\frac{\varepsilon}{\sigma} \left(\frac{\hat{\beta} - \beta}{\sigma}\right)'\right] = E\left[M\frac{\varepsilon}{\sigma} \left(\frac{\varepsilon}{\sigma}\right)' X(X'X)^{-1}\right].$$

Independence of Numerator and Denominator: Evaluation

Using $E\left[\frac{\varepsilon}{\sigma}\left(\frac{\varepsilon}{\sigma}\right)'|X\right] = I$ because $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$,

$$E\left[M\frac{\varepsilon}{\sigma}\left(\frac{\varepsilon}{\sigma}\right)'X(X'X)^{-1}|X\right] = MX(X'X)^{-1}.$$

Recall $M = I - X(X'X)^{-1}X'$, hence

$$MX = X - X(X'X)^{-1}X'X = X - X = 0.$$

Therefore,

$$MX(X'X)^{-1} = 0 \Rightarrow \text{Cov}\left(M\frac{\varepsilon}{\sigma}, \frac{\hat{\beta} - \beta}{\sigma}\right) = 0.$$

Implication: The vectors $M\varepsilon/\sigma$ and $(\hat{\beta} - \beta)/\sigma$ are uncorrelated, and under normality, this means they are **independent**.

Consequently,

$$\frac{\hat{\beta} - \beta}{\sigma} \text{ is independent of } \frac{e'e}{\sigma^2} = \left(\frac{\varepsilon}{\sigma}\right)' M \left(\frac{\varepsilon}{\sigma}\right).$$

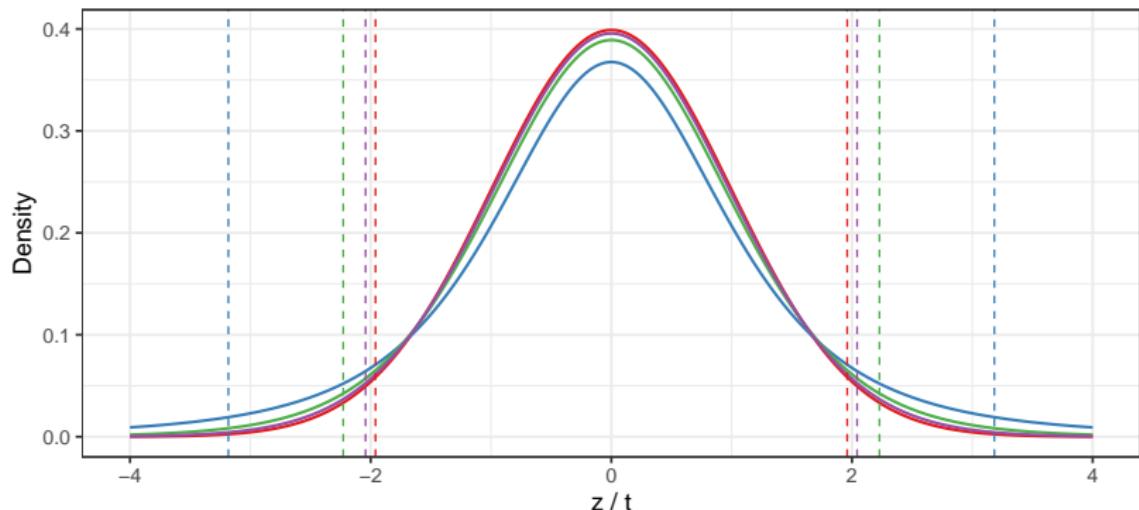
Conclusion: The numerator and denominator of the t -statistic are independent, completing the proof that

$$t_k \sim t_{n-(K+1)}.$$

t-distribution compared to Normal distribution

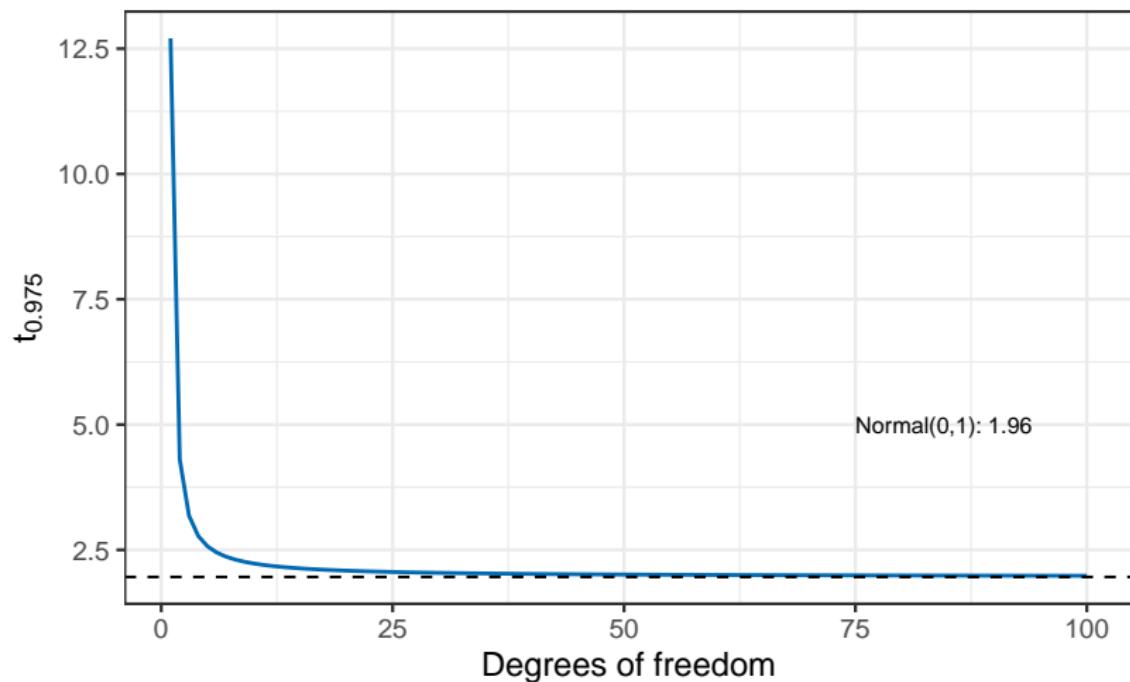
Heavier tails for small degrees of freedom (df); dashed lines = $q_{0.975}$ cutoffs

— Normal — t (df=3) — t (df=10) — t (df=30)



t-distribution compared to Normal distribution

Critical Value $t_{0.975}$ as df increases



Numerical Example: Computing a t -Statistic

Data:

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 2.4 \\ 2.7 \\ 2.9 \\ 3.1 \end{bmatrix}.$$

Manual computation:

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)} = \frac{-0.25}{0.3202} = -0.78$$

Decision:

$$|t| = 0.78 < t_{0.975,2} = 4.30$$

\Rightarrow Fail to reject $H_0 : \beta_1 = 0$.

95% Confidence Interval for β_1 :

$$\begin{aligned}\hat{\beta}_0 &= 2.9, \\ \hat{\beta}_1 &= -0.25, \\ \text{se}(\hat{\beta}_1) &= 0.3202\end{aligned}$$

$$\begin{aligned}CI_{95\%}(\beta_1) &= \hat{\beta}_1 \pm t_{0.975,2} \times \text{se}(\hat{\beta}_1) \\ &= -0.25 \pm 4.30 \times 0.3202 \\ &= -0.25 \pm 1.38\end{aligned}$$

$$\Rightarrow CI_{95\%}(\beta_1) = [-1.63, 1.13].$$

Simualtion of Confidence Intervals across Samples

Simulation setup:

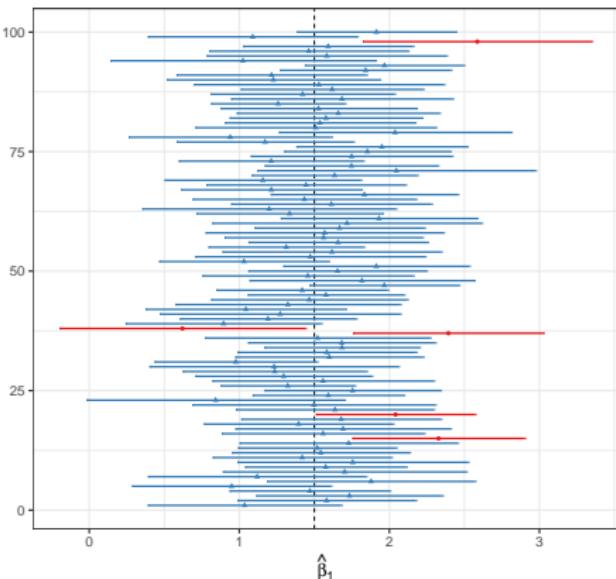
- ▶ True model:
 $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- ▶ $\beta_1 = 1.5$, $\varepsilon_i \sim N(0, 1)$
- ▶ $n = 30$ observations per sample
- ▶ Draw 100 Samples

Interpretation:

- ▶ Each line: 95% CI for $\hat{\beta}_1$ from one sample
- ▶ Dashed line: true β_1
- ▶ **Blue:** interval covers β_1
- ▶ **Red:** interval misses β_1
- ▶ About 95% of CIs contain the truth: Here exactly 5 miss

Monte Carlo Illustration of 95% Confidence Intervals
Each line = one sample's 95% CI for slope β_1 ; dashed line = true β_1

Contains true value? ● FALSE ● TRUE



Testing Multiple Linear Restrictions

Instead of testing a single coefficient, we may want to test

$$H_0 : R\beta = q$$

where

- ▶ R is an $r \times K + 1$ restriction matrix of full row rank
- ▶ q is an $r \times 1$ vector
- ▶ r = number of linear restrictions (e.g., $r = 2$ means testing 2 equations jointly)

Examples:

- ▶ $H_0 : \beta_1 = \beta_2 = 0 \Rightarrow R = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, q = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- ▶ $H_0 : \beta_1 = \beta_3 \Rightarrow R = \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix}, q = \begin{bmatrix} 0 \end{bmatrix}$

(Assuming $\beta = [\beta_0, \beta_1, \beta_2, \beta_3]^\top$ where β_0 is the intercept.)

Testing Multiple Linear Restrictions (contd.)

We want to test r linear restrictions on the regression coefficients:

$$H_0 : R\beta = q, \quad R \text{ is } r \times K, \quad q \text{ is } r \times 1.$$

Idea:

- ▶ Compare model fit between
 1. the unrestricted model (no restrictions), and
 2. the restricted model where $R\beta = q$ holds exactly.
- ▶ If H_0 is true, the restricted model should not fit much worse.

The F -statistic formalizes this comparison.

The unrestricted OLS estimator solves

$$\min_{\beta} (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta) \quad \Rightarrow \quad \hat{\beta}_{UR} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}.$$

Under the classical linear model

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon, \quad E[\varepsilon|\mathbf{X}] = 0, \quad \text{Var}(\varepsilon|\mathbf{X}) = \sigma^2 I_n,$$

we have

$$\hat{\beta}_{UR} \mid \mathbf{X} \sim \mathcal{N}(\beta, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}).$$

Residuals:

$$\mathbf{e}_{UR} = \mathbf{y} - \mathbf{X}\hat{\beta}_{UR}.$$

Now impose the restrictions $R\beta = q$ and solve

$$\min_{\beta} (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta) \quad \text{s.t. } R\beta = q.$$

Use the Lagrangian:

$$\mathcal{L}(\beta, \lambda) = (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta) + 2\lambda'(R\beta - q),$$

where λ is an $r \times 1$ vector of multipliers.

First-order conditions:

$$-2\mathbf{X}'(\mathbf{y} - \mathbf{X}\beta) + 2R'\lambda = 0,$$

$$R\beta - q = 0.$$

We start from the first-order conditions under linear restrictions:

$$\begin{bmatrix} X'X & R' \\ R & 0 \end{bmatrix} \begin{bmatrix} \hat{\beta}_R \\ \hat{\lambda} \end{bmatrix} = \begin{bmatrix} X'y \\ q \end{bmatrix}.$$

- ▶ The upper block gives the normal equation with Lagrange multipliers:

$$X'X\hat{\beta}_R + R'\hat{\lambda} = X'y.$$

- ▶ The lower block encodes the restriction:

$$R\hat{\beta}_R = q.$$

- ▶ Substituting $X'y = X'X\hat{\beta}_{UR}$ (from the unrestricted OLS estimator) yields:

$$R'\hat{\lambda} = X'X(\hat{\beta}_{UR} - \hat{\beta}_R).$$

From

$$R'\hat{\lambda} = X'X(\hat{\beta}_{UR} - \hat{\beta}_R),$$

post-multiply by $(X'X)^{-1}R'$ and rearrange to isolate $\hat{\lambda}$:

$$\hat{\lambda} = [R(X'X)^{-1}R']^{-1}(R\hat{\beta}_{UR} - q).$$

Substitute this expression back into the first equation to obtain:

$$\hat{\beta}_R = \hat{\beta}_{UR} - (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(R\hat{\beta}_{UR} - q).$$

- ▶ The correction term projects the unrestricted estimate onto the subspace that satisfies $R\beta = q$.
- ▶ The matrix $(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}$ adjusts $\hat{\beta}_{UR}$ just enough to enforce the restrictions.

Under $H_0 : R\beta = q$,

$$R\hat{\beta}_{UR} - q = R(\hat{\beta}_{UR} - \beta) \sim \mathcal{N}(0, \sigma^2 R(X'X)^{-1} R').$$

Then the quadratic form

$$\frac{1}{\sigma^2} (R\hat{\beta}_{UR} - q)' [R(X'X)^{-1} R']^{-1} (R\hat{\beta}_{UR} - q) \sim \chi_r^2.$$

Interpretation: This measures how far the sample estimates $R\hat{\beta}_{UR}$ are from the hypothesized values q , scaled by their sampling variance.

The unbiased estimator of σ^2 from the unrestricted model is:

$$s^2 = \frac{\mathbf{e}'_{UR} \mathbf{e}_{UR}}{n - K}, \quad \frac{(n - K)s^2}{\sigma^2} \sim \chi^2_{n-K}.$$

Since $X'M = 0$, this χ^2_{n-K} term is **independent** of $(R\hat{\beta}_{UR} - q)$.

Therefore:

$$\begin{aligned} F &= \frac{[(R\hat{\beta}_{UR} - q)'[R(X'X)^{-1}R']^{-1}(R\hat{\beta}_{UR} - q)/r]}{s^2} \\ &= \frac{\chi^2_r/r}{\chi^2_{n-K}/(n - K)} \sim F(r, n - K). \end{aligned}$$

Interpretation: The numerator captures the fit loss from imposing $R\beta = q$; the denominator measures the unexplained variance. Under H_0 , their ratio follows an F distribution.

Alternative Expression of F-statistic

The F -test can also be written in terms of restricted and unrestricted regression fits:

$$F = \frac{(SSR_R - SSR_{UR})/r}{SSR_{UR}/(n - K)}.$$

where

- ▶ SSR_{UR} = sum of squared residuals from unrestricted model
- ▶ SSR_R = sum of squared residuals from model estimated under H_0
- ▶ r = number of restrictions

Intuition: If restrictions are correct, forcing them should not increase SSR “too much.” If SSR_R is much larger than SSR_{UR} , H_0 is rejected.

Special Cases of the F-test

- ▶ $r = 1$: F -test reduces to the squared t -test

$$F(1, n - K) \equiv t^2(n - K).$$

- ▶ Joint significance of all slope coefficients:

$$H_0 : \beta_2 = \beta_3 = \cdots = \beta_K = 0.$$

This is the test of “overall significance” of the regression.

Summary:

- ▶ t -test: single restriction
- ▶ F -test: multiple restrictions

4.2.2: OLS in Large Samples

What we cover (sketches, intuition first; proofs optional):

1. Consistency of OLS: fixed X vs. random X .
2. Asymptotic normality of $\hat{\beta}$.
3. White (heteroskedasticity-robust) variance: the “sandwich”.
4. Homo- vs. heteroskedasticity in large n (what changes?).

Convergence in Probability

Convergence in Probability

A sequence of random variables Z_n **converges in probability** to Z if

$$Z_n \xrightarrow{p} Z \Leftrightarrow \forall \varepsilon > 0 : P(|Z_n - Z| > \varepsilon) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Useful Rules for convergence in probability:

If $X_n \xrightarrow{p} a$ and $Y_n \xrightarrow{p} b$, then:

- ▶ $X_n + Y_n \xrightarrow{p} a + b$
- ▶ $X_n Y_n \xrightarrow{p} ab$
- ▶ If $b \neq 0$, then $\frac{X_n}{Y_n} \xrightarrow{p} \frac{a}{b}$
- ▶ If $g(\cdot)$ is continuous at a , then $g(X_n) \xrightarrow{p} g(a)$ (Continuous Mapping Thm.)

Why important? Lets us manipulate probability limits just like ordinary limits

Consistency of an Estimator

Definition: An estimator $\hat{\theta}_n$ of parameter θ is consistent if

$$\hat{\theta}_n \xrightarrow{P} \theta.$$

Intuition: As sample size grows, $\hat{\theta}_n$ gets arbitrarily close to the true θ with high probability.

Key ingredients to show consistency:

- ▶ Law of Large Numbers (LLN)
- ▶ Exogeneity assumptions:
Errors have mean zero conditional on regressors

Law of Large Numbers (LLN)

(Weak) Law of Large Numbers

If $\{Z_i\}_{i=1}^n$ are IID with $E[Z_i] = \mu$ and $\text{Var}(Z_i) < \infty$, then

$$\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i \xrightarrow{p} \mu.$$

Interpretation: The sample average gets arbitrarily close to the population mean as n grows.

Examples:

- ▶ Toss a coin: $\bar{Z}_n = \text{share of heads} \xrightarrow{p} 0.5$.
- ▶ Regression context:

$$\frac{1}{n} \sum x_i \varepsilon_i \xrightarrow{p} E[x_i \varepsilon_i] = 0.$$

Consistency of OLS (Sketch of a proof)

Recall

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\varepsilon.$$

Rewrite:

$$\hat{\beta} - \beta = \left(\frac{1}{n}\mathbf{X}'\mathbf{X}\right)^{-1}\left(\frac{1}{n}\mathbf{X}'\varepsilon\right).$$

- ▶ By LLN: $\frac{1}{n}\mathbf{X}'\mathbf{X} \xrightarrow{P} Q$ (positive definite).
- ▶ By LLN: $\frac{1}{n}\mathbf{X}'\varepsilon = \frac{1}{n} \sum \mathbf{x}_i \varepsilon_i \xrightarrow{P} 0$ if $E[\mathbf{x}_i \varepsilon_i] = 0$ (exogeneity).

Therefore,

$$\hat{\beta} \xrightarrow{P} \beta + Q^{-1} \cdot 0 = \beta.$$

Conclusion: $\hat{\beta}$ is a **consistent estimator** of β .

CLT and Convergence in Distribution

Convergence in distribution: $Z_n \xrightarrow{d} Z$ means that the distribution of Z_n approaches that of Z as $n \rightarrow \infty$.

Central Limit Theorem (CLT): If $\{Z_i\}$ are IID with $E[Z_i] = 0$, $\text{Var}(Z_i) = \sigma^2 < \infty$, then

$$\sqrt{n} \bar{Z}_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n Z_i \xrightarrow{d} \mathcal{N}(0, \sigma^2).$$

Implication for regression: Sums of random vectors like $\frac{1}{\sqrt{n}} \sum x_i \varepsilon_i$ become approximately normal for large n .

Ingredients for Asymptotic Normality

To study the large-sample behavior of $\hat{\beta}$, we decompose

$$\sqrt{n}(\hat{\beta} - \beta) = \left(\frac{1}{n} \sum_{i=1}^n x_i x_i' \right)^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n x_i \varepsilon_i \right).$$

We need two ingredients for this expression to have a limiting distribution:

1. Regressor matrix (LLN):

$$\frac{1}{n} \sum_{i=1}^n x_i x_i' \xrightarrow{p} Q = E[x_i x_i'], \quad Q \succ 0.$$

2. Score term (CLT):

$$\frac{1}{\sqrt{n}} \sum_{i=1}^n x_i \varepsilon_i \xrightarrow{d} \mathcal{N}(0, \Sigma), \quad \text{with } \Sigma = E[\varepsilon_i^2 x_i x_i'].$$

Here $\Sigma = \text{Var}(x_i \varepsilon_i)$ is the variance of the score term.

Moment and exogeneity conditions:

- ▶ $E[\varepsilon_i | x_i] = 0$ (exogeneity)
- ▶ $E[\|x_i\|^2] < \infty, \quad E[\varepsilon_i^2 \|x_i\|^2] < \infty$

These ensure the LLN and CLT apply.

A Quick Reminder: Slutsky's Theorem

Goal: Combine convergence in probability and convergence in distribution.

If

$$X_n \xrightarrow{d} X \quad \text{and} \quad Y_n \xrightarrow{p} c,$$

then

$$Y_n X_n \xrightarrow{d} cX \quad \text{and} \quad X_n + Y_n \xrightarrow{d} X + c.$$

Intuition:

- ▶ Random parts (X_n) have limiting distributions.
- ▶ Deterministic parts (Y_n) “settle down” to constants.
- ▶ Together: stable + random \Rightarrow same limit shape, scaled by the constant.

Here:

$$\underbrace{\left(\frac{1}{n} \sum x_i x_i' \right)^{-1} \left(\frac{1}{\sqrt{n}} \sum x_i \varepsilon_i \right)}_{\xrightarrow{p} Q^{-1}} \xrightarrow{d} \mathcal{N}(0, Q^{-1} \Sigma Q^{-1}).$$

(Covariance transforms as $C \Sigma C'$ when a normal vector $Z \sim \mathcal{N}(0, \Sigma)$ is multiplied by a matrix C ; here $C = Q^{-1}$, hence $Q^{-1} \Sigma Q^{-1}$.)

Why A6 (Normality) is No Longer Needed

Recall A6: $u|X \sim \mathcal{N}(0, \sigma^2 I_n)$ implied exact finite-sample normality of $\hat{\beta}$.

Asymptotics replace A6:

- ▶ By LLN: $\frac{1}{n} \sum x_i x_i' \xrightarrow{p} Q$.
- ▶ By CLT: $\frac{1}{\sqrt{n}} \sum x_i \varepsilon_i \xrightarrow{d} \mathcal{N}(0, \Sigma)$.
- ▶ Slutsky's theorem $\Rightarrow \sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} \mathcal{N}(0, Q^{-1} \Sigma Q^{-1})$.

Key takeaway: Even without normal errors, OLS is asymptotically normal. Exact inference (t, F) requires A6, but robust asymptotic inference does not.

Heteroskedasticity-Robust Variance (White)

Goal:

Do away with homoskedasticity assumption:

Estimate $\text{AVAR}(\hat{\beta}) = \frac{1}{n} Q^{-1} \Sigma Q^{-1}$ without assuming homoskedasticity.

White (HC0) estimator

$$\widehat{\text{Var}}_{\text{rob}}(\hat{\beta}) = (X'X)^{-1} \left(\sum_{i=1}^n x_i x_i' e_i^2 \right) (X'X)^{-1}.$$

Variants (finite-sample tweaks): HC1, HC2, HC3.

Sandwich picture:

bread $(X'X)^{-1}$ - toppings $\sum x_i x_i' e_i^2$ - bread $(X'X)^{-1}$

What's in the Sandwich?

Bread: $(X'X)^{-1}$ comes from the usual OLS normal equations

Toppings (the filling):

$$\sum_i x_i x_i' e_i^2$$

- ▶ Each observation i contributes $x_i x_i' e_i^2$.
- ▶ e_i^2 plays the role of an observation-specific variance.
- ▶ $x_i x_i'$ spreads that variance across all covariates according to their values.

Takeaway:

The bread pieces come from the model structure; the filling captures how noisy each observation actually is.

Practical note

In applied work, it is common to report robust (heteroskedasticity-consistent) standard errors by default, since the homoskedasticity assumption rarely holds. Variants (HC1–HC3) mainly differ in small-sample adjustments, but all are asymptotically valid.

Extensions for dependent or structured errors:

- ▶ **Cluster-robust:** allows arbitrary correlation within clusters (e.g. firms, regions, individuals), but assumes independence across clusters.
- ▶ **HAC / Newey–West:** heteroskedasticity- and autocorrelation-consistent, for time series with serial correlation.
- ▶ **Spatial-robust:** allows correlation decaying with distance (e.g. Conley standard errors).
- ▶ **Panel-robust:** combinations of clustering across two dimensions (e.g. firm and time).

How the Other Sandwiches Look Like

Same recipe, different fillings:

All robust estimators share the general **sandwich form**

$$\widehat{\text{Var}}(\hat{\beta}) = (\mathbf{X}'\mathbf{X})^{-1} \left(\sum_{i,j} \mathbf{x}_i \hat{\Omega}_{ij} \mathbf{x}_j' \right) (\mathbf{X}'\mathbf{X})^{-1},$$

where $\hat{\Omega}$ encodes the assumed error covariance structure.

Estimator	Toppings (middle term)
White (HC)	$\hat{\Omega}_{ij} = 0$ if $i \neq j$; $\hat{\Omega}_{ii} = \mathbf{e}_i^2$
Cluster-robust	$\hat{\Omega} = \text{blockdiag}_g(\mathbf{X}_g' \mathbf{e}_g \mathbf{e}_g' \mathbf{X}_g)$
HAC / Newey-West	$\hat{\Omega}_{ij}$ decays with $ i - j $ (serial correlation)
Spatial-robust (Conley)	$\hat{\Omega}_{ij}$ decays with distance d_{ij}
Two-way cluster	Sum of two clustering dimensions minus overlap

Asymptotic t for single coefficients

Null: $H_0: \beta_k = \beta_{k,0}$. Robust s.e.: $\widehat{\text{se}}_{\text{rob}}(\hat{\beta}_k) = \sqrt{\widehat{\text{Var}}_{\text{rob}}(\hat{\beta})_{kk}}$.

$$t_k^{\text{rob}} = \frac{\hat{\beta}_k - \beta_{k,0}}{\widehat{\text{se}}_{\text{rob}}(\hat{\beta}_k)} \xrightarrow{d} \mathcal{N}(0, 1).$$

Interpretation:

Use standard normal critical values asymptotically; in practice, software often reports t with df $n - K$ but based on robust s.e.

Homo- vs. Heteroskedasticity (large n)

	Homoskedasticity	Heteroskedasticity
Consistency of $\hat{\beta}$	Yes	Yes
Asymptotic $\text{Var}(\hat{\beta})$	$\sigma^2 Q^{-1}$	$Q^{-1} \Sigma Q^{-1}$
SE to use	classical $(X'X)^{-1} s^2$	robust (White/HC)
t/F	classical valid	robust t , Wald/ F

References I

ANGRIST, J. D. AND J.-S. PISCHKE (2009): Mostly Harmless Econometrics: An Empiricist's Companion, Princeton University Press, chapter 3.

FILOSO, V. (2013): "Regression Anatomy, Revealed," The Stata Journal, 13, 92–106.

FRISCH, R. AND F. V. WAUGH (1933): "Partial Time Regressions as Compared with Individual Trends," Econometrica, 1, 387–401.

LOVELL, M. C. (2008): "A Simple Proof of the FWL Theorem," The Journal of Economic Education, 39, 88–91.