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4.1.1: FWL Theorem in Equation Algebra



From the multivariate to the bivariate regression

yi = β0 + β2x2,i + β1x1,i + εi,

where x2,i is the regressor of interest and x1,i is a control.

Frisch-Waugh-Lovell (FWL): The coefficient on x2,i and the
residuals from the full model are exactly recovered by either
(a) a regression using partialled–out variables:

ỹi = β0 + β2x̃2,i + εi,

(b) a regression using residualized variables:

uy,i = β2u2,i + εi.
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Why is the decomposition useful?

The Frisch-Waugh-Lovell theorem is useful because it lets us study
the effect of one regressor while controlling for others in a simple
way:

▶ We can visualize the relationship between yi and x2,i in a
two–dimensional scatter plot, once we have partialled out
control variables.

▶ We can partial out high-dimensional controls (e.g. fixed effects)
to reduce computation time. This is the principle behind
commands such as reghdfe in Stata.

▶ We can separate two sources of variation:

1. variation in x2,i explained by x1,i, and
2. how yi responds to the part of x2,i orthogonal to x1,i.

▶ It clarifies where omitted variable bias comes from, by showing
exactly how the correlation between x1,i and x2,i matters.
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How to partial out x1,i

Step 1 (project x2,i on x1,i):

x2,i = γ̂0 + γ̂1x1,i + u2,i, u2,i ⊥ x1,i.

Step 2 (project yi on x1,i):

yi = δ̂0 + δ̂1x1,i + uy,i, uy,i ⊥ x1,i.

Step 3 (define partialled–out variables, keep intercepts):

x̃2,i := γ̂0 + u2,i, ỹi := δ̂0 + uy,i.

Bivariate regression on adjusted variables: ỹi = β0 + β2x̃2,i + εi
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Frisch–Waugh–Lovell theorem (statement)

Theorem
For the model

yi = β0 + β2x2,i + β1x1,i + εi,

the following two bivariate regressions yield the same β2 and
residuals as the full model:

ỹi = β̃0 + β2x̃2,i + ε̃i, uy,i = β2u2,i + εi (no intercept).

Hence, working with partialled–out variables (keeping intercepts) or
with residuals (dropping intercepts) is equivalent for estimating β2

and εi.
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Partialled-out variables reproduce the full model

Show that
yi = β0 + β2x2,i + β1x1,i + εi (1)

ỹi = β0 + β̃1x̃2,i + ε̃i. (2)

Plug in the projections

yi = δ̂0 + δ̂1x1,i + uy,i, x2,i = γ̂0 + γ̂1x1,i + u2,i

into equation (1):

yi = δ̂0 + δ̂1x1,i + uy,i

= β0 + β2(γ̂0 + γ̂1x1,i + u2,i) + β1x1,i + εi,

ỹi = δ̂0 + uy,i = β0 + β2(γ̂0 + u2,i) + (β2γ̂1 − δ̂1 + β1)x1,i + εi.

Because we partialled out x1,i using OLS, x1,i is mechanically uncorrelated
with u2,i and with uy,i. Therefore the regression coefficient on the
partialled–out variable x1,i is zero. The equation simplifies with x̃2,i = γ̂0 + u2,i
to

ỹi = δ̂0 + uy,i = β0 + β2(γ̂0 + u2,i) + εi.
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Partialling out only x2,i

If we partial out x2,i but not yi, then

x2,i = γ0 + γ1x1,i + u2,i, x̃2,i = γ0 + u2,i.

The regression becomes

yi = δ0 + δ1x1,i + uy,i

= (β0 + δ1x̄1) + β2x̃2,i + (εi + δ1x1,i)
= κ+ β2x̃2,i + ϵi. (1)

Here the intercept κ, the residuals ϵi, and the standard errors differ
from the full model. But the slope β2 on x̃2,i is unchanged.
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Residualized variables
From the partialled–out form we have

ỹi = δ0 + uy,i = β0 + β2(γ0 + u2,i) + εi.

Subtract δ0:

uy,i = β0 − δ0 + β2γ0 + β2u2,i + εi.

But by the projection identities,

β0 − δ0 + β2γ0 = 0,

so the constant term cancels.
Thus we obtain the residualized regression:

uy,i = β2u2,i + εi .

This is the Frisch–Waugh–Lovell theorem in residualized form:
regressing uy,i on u2,i (without intercept) recovers the same β2 as the
full model.
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4.1.2: FWL Theorem in Matrix Notation



Why P and M will keep showing up

OLS always decomposes the vector of outcomes y into two
orthogonal components:

y = PXy︸︷︷︸
projection onto regressors

+ MXy︸︷︷︸
orthogonal residuals

,

where the matrices

PX = X(X′X)−1X′, MX = I− PX

have the following properties:
▶ PX is a projection matrix that maps y onto the column space of

X.
▶ MX is a residual-maker matrix that removes all variation in y

explained by X.
▶ Both are symmetric and idempotent: P′

X = PX, P2
X = PX, and

similarly for MX.

Key idea for FWL: If we split X into (X1,X2), we can first remove the
influence of X1 using MX1

, then run a regression on the part of X2 that
is orthogonal to X1.
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Review: Partition of y

The OLS model y = Xβ̂ + e can be written in matrix form as:

y = ŷ+ e = PXy+MXy.

This partitions y into two orthogonal pieces:

▶ PXy: The fitted part, spanned by columns of X

▶ MXy: The residual part, orthogonal to all columns of X

Each term has a clear dimension and meaning:

▶ y: n× 1 vector of data

▶ PX: n× n projection matrix

▶ MX: n× n residual-maker matrix

▶ e: n× 1 vector of residuals

Orthogonality condition: X′e = 0. This is what ensures that OLS
residuals are uncorrelated with the regressors.
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Decomposing the Normal Equations

OLS minimizes ∥y− Xβ∥2, which leads to the normal equations

X′Xβ̂ = X′y.

If X is composed of two sets of regressors (X1,X2), we can write this
in block form: [

X′
1X1 X′

1X2

X′
2X1 X′

2X2

] [
β̂1

β̂2

]
=

[
X′
1y

X′
2y

]
.

This gives two matrix equations:

X′
1X1β̂1 + X′

1X2β̂2 = X′
1y (2)

X′
2X1β̂1 + X′

2X2β̂2 = X′
2y (3)

Goal: Derive an expression for β̂2 that no longer depends on β̂1. This
is the essence of the FWL theorem in matrix form.
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Step 1: Solve for β̂1

Starting from Equation (2):

X′
1X1β̂1 + X′

1X2β̂2 = X′
1y.

We isolate β̂1:
X′
1X1β̂1 = X′

1y− X′
1X2β̂2,

and multiply by (X′
1X1)

−1:

β̂1 = (X′
1X1)

−1X′
1y− (X′

1X1)
−1X′

1X2β̂2.

Interpretation: The first term is the coefficient from regressing y on
X1 only; the second adjusts for how X2 overlaps with X1.
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Step 2: Substitute into the second equation

Plug the expression for β̂1 into Equation (3):

X′
2X1β̂1 + X′

2X2β̂2 = X′
2y.

Substitute β̂1 = (X′
1X1)

−1X′
1(y− X2β̂2):

X′
2X1(X′

1X1)
−1X′

1(y− X2β̂2) + X′
2X2β̂2 = X′

2y.

Expand:

X′
2X1(X′

1X1)
−1X′

1y− X′
2X1(X′

1X1)
−1X′

1X2β̂2 + X′
2X2β̂2 = X′

2y.

Next step: Recognize a familiar projection matrix inside this
expression.
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Step 3: Identify the projection matrix

The term X1(X′
1X1)

−1X′
1 is the projection matrix PX1

. Use this to
rewrite:

X′
2PX1

y− X′
2PX1

X2β̂2 + X′
2X2β̂2 = X′

2y.

Now add and subtract X′
2IX2β̂2 to reveal an (I− PX1

) structure:

X′
2(I− PX1

)y = X′
2(I− PX1

)X2β̂2.

Recognize (I− PX1
) as the residual-maker matrix MX1

:

X′
2MX1

y = X′
2MX1

X2β̂2.

Finally, solve for β̂2:

β̂2 = (X′
2MX1

X2)
−1X′

2MX1
y.
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Step 4: Interpretation of the result
We have derived the key matrix formula for the FWL theorem:

β̂2 = (X′
2MX1

X2)
−1X′

2MX1
y .

Note that MX1
is symmetric and idempotent:

MX1
= MX1

MX1
= M′

X1
MX1

.

Thus we can rewrite:

β̂2 = ((MX1
X2)

′(MX1
X2))

−1(MX1
X2)

′(MX1
y).

Interpretation:
▶ X̃2 = MX1

X2: residuals from regressing X2 on X1.
▶ ỹ = MX1

y: residuals from regressing y on X1.

So we can write simply:

β̂2 = (X̃′
2X̃2)

−1X̃′
2ỹ.
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What FWL tells us about omitted variable bias
FWL gives a clear view of what happens when we omit relevant
regressors.
Setup: Partition the true regressor matrix as

X = [X1 X2 ],

where X1 are included and X2 are omitted variables in the short
regression

y = X1β̃1 + ε̃.

By the Frisch–Waugh–Lovell theorem,

β̃1 = (X′
1X1)

−1X′
1y = β1 + (X′

1X1)
−1X′

1X2β2

Interpretation:
▶ The bias term (X′

1X1)
−1X′

1X2β2 arises from projecting X2 onto X1.
▶ Omitted variables X2 matter for β̃1 only if both:

X′
1X2 ̸= 0 (there is correlation between regressors)
β2 ̸= 0 (omitted variables matter for y).
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Simplified Bivariate Perspective
Consider the true model with one included and one omitted regressor:

yi = β1x1,i + β2x2,i + εi.

If we omit x2,i and estimate

yi = β̃1x1,i + ε̃i,

the FWL decomposition implies

β̃1 = β1 + β2
cov(x1, x2)

var(x1)
.

Interpretation:
▶ The second term is the omitted variable bias.
▶ Bias is positive if x1 and x2 move together and both raise y.
▶ Bias is zero if either:

cov(x1, x2) = 0 or β2 = 0.
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FWL perspective on OVB: Projections

FWL shows: Bias is just the influence of X2 transmitted through its
correlation with X1. We can also show it as projection problem.

Step 1: Regress X2 on X1:

X2 = PX1
X2 +MX1

X2,

where PX1
X2 is the part of X2 explained by X1.

Step 2: The short regression omits MX1
X2, but keeps PX1

X2 through
correlation with X1.

Implication:

▶ The bias equals the effect of the omitted variable (β2) times how
strongly X2 is embedded in X1.

▶ When X1 and X2 are orthogonal, PX1
X2 = 0 and no bias arises.
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4.2: OLS Properties



Finite Sample Properties of OLS (due to A1-A5)

Under Assumptions A1–A5 (linearity, rank, exogeneity, spherical errors,
nonstochastic X) the following holds for OLS:

▶ Unbiasedness:
E[β̂|X] = β

▶ Variance:
Var[β̂|X] = σ2(X′X)−1

▶ Gauss–Markov Theorem: Among all linear unbiased estimators, β̂ has
the smallest variance (BLUE).

▶ Orthogonality: β̂ is uncorrelated with residuals e; fitted values ŷ and
residuals e are orthogonal.
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Distribution under Assumption A6 (Normality)

Recall: With A1–A5 we have
▶ OLS is unbiased
▶ Variance formula: Var[β̂|X] = σ2(X′X)−1

▶ OLS is BLUE (Gauss–Markov theorem)

Additional Assumption A6:

ε|X ∼ N (0, σ2In).

Implications for finite-sample distribution:
▶ β̂|X ∼ N (β, σ2(X′X)−1)

▶ t- and F-statistics have exact finite-sample distributions

Interpretation: A6 is not needed for unbiasedness or efficiency. But it delivers
exact finite-sample inference.
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4.2.1: Finite Sample Properties



Unbiased Estimation

The least squares estimator can be written as function of the population
regression line:

β̂ = (X′X)−1X′y = (X′X)−1X′(Xβ + ε) = β + (X′X)−1X′ε

Now, taking the conditional expectation yields

E[β̂|X] = β + E[(X′X)−1X′ε |X] = β + (X′X)−1X′E[ε|X]

= β by assumption A3: Exogeneity

Applying the law of iterated expectation shows

E[β̂] = E[E[β̂|X]] = E[β] = β
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Variance of Least Squares Estimator

β̂ = β + (X′X)−1X′ε

The conditional variance of β̂ is

Var[β̂ |X] = E
[
(β̂ − E[β̂|X])(β̂ − E[β̂|X])′

∣∣X]
= E

[
(β̂ − β)(β̂ − β)′

∣∣X] (since E[β̂|X] = β by A3)

= E
[(
(X′X)−1X′ε

)(
(X′X)−1X′ε

)′ ∣∣X]
= E

[
(X′X)−1X′ε ε′X(X′X)−1

∣∣X]
= (X′X)−1X′ E[εε′|X]X(X′X)−1

= (X′X)−1X′ σ2In X(X′X)−1 by Assumption A4: Homoskedasticity

= σ2(X′X)−1.
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Law of Total Variance
For any random vector Z and information set X,

Var[Z] = E
[
Var[Z|X]

]
+ Var

(
E[Z|X]

)
.

Proof:

Var[Z] = E
[
(Z− E[Z])(Z− E[Z])′

]
= E

[
(Z− E[Z|X] + E[Z|X]− E[Z])(Z− E[Z|X] + E[Z|X]− E[Z])′

]
= E

[
(Z− E[Z|X])(Z− E[Z|X])′

]
+ E
[
(E[Z|X]− E[Z])(E[Z|X]− E[Z])′

]
+ 2E

[
(Z− E[Z|X])(E[Z|X]− E[Z])′

]
.

The cross term vanishes because E[Z− E[Z|X] | X] = 0. Thus,

Var[Z] = E
[
Var[Z|X]

]
+ Var

(
E[Z|X]

)
.

Interpretation: The total variance equals the average of conditional variances
plus the variance of conditional means.
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Unconditional Variance of OLS Estimator

We still have to derive the unconditional variance of β̂. By the law of total
variance,

Var[β̂] = E
[
Var[β̂|X]

]
+ Var

(
E[β̂|X]

)
= E
[
σ2(X′X)−1]+ Var[β]

= σ2E
[
(X′X)−1],

since population paramter β is nonrandom.
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Intuition for OLS Variance

Key idea: The variance of OLS reflects how much β̂ would change if we drew
a new sample.

▶ Residual variance σ2 = “background noise” in y.
▶ Matrix (X′X)−1 = “information in X”:

▶ More spread in X ⇒ (X′X) larger ⇒ variance of β̂ smaller.
▶ Little variation or multicollinearity ⇒ (X′X)−1 large ⇒

variance of β̂ large.
▶ Together:

Var[β̂|X] = σ2(X′X)−1

balances signal in regressors vs. noise in errors.

Analogy: Estimating a mean: more observations ⇒ smaller variance. In
regression, it’s the same idea, but “information” comes from regressor
variation.
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Why (X′X)−1 Reflects the Covariance Structure of the Regressors

X′X =



n
∑
i

xi1
∑
i

xi2 · · ·
∑
i

xiK∑
i

xi1
∑
i

x2i1
∑
i

xi1xi2 · · ·
∑
i

xi1xiK∑
i

xi2
∑
i

xi2xi1
∑
i

x2i2 · · ·
∑
i

xi2xiK

...
...

... . . . ...∑
i

xiK
∑
i

xiKxi1
∑
i

xiKxi2 · · ·
∑
i

x2iK


.

Intuition:
▶ X′X/n collects raw (uncentered) second moments of the

regressors. Although it’s not yet in the familiar form, it fully
encodes the variances and covariances of the X.

▶ Centering would just adjust by the means.
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Sidenote: Structure of X′y

X′y =



∑
i

yi∑
i

xi1yi∑
i

xi2yi

...∑
i

xiKyi


.

Intuition:
▶ X′y collects the raw (uncentered) cross-moments between each

regressor and the outcome y.
▶ This mirrors the structure of X′X, but for the relationship

between X and y.
▶ Centering would only adjust for means, not the underlying

covariance structure.
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The Variance–Weights Matrix (X′X)−1 in a bivariate case

For the bivariate model with intercept

yi = β0 + β1xi + εi,

we have

X =


1 x1
1 x2
...

...
1 xn

 , X′X =


n

∑
i

xi∑
i

xi
∑

i

x2i

 .

The inverse is

(X′X)−1 =
1

n
∑

i x2i − (
∑

i xi)2


∑

i

x2i −
∑

i

xi

−
∑

i

xi n

 .

Thus, the covariance matrix of OLS estimates is

Var
[
β̂0

β̂1

]
= σ2(X′X)−1 =

σ2

n
∑

i x2i − (
∑

i xi)2


∑

i

x2i −
∑

i

xi

−
∑

i

xi n

 .
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The Variance–Weights Matrix (X′X)−1 in a bivariate case

Entries:

Var[β̂0|X] = σ2

∑
i x

2
i

n
∑

i x2i − (
∑

i xi)2
,

Var[β̂1|X] = σ2 n
n
∑

i x2i − (
∑

i xi)2
,

Cov[β̂0, β̂1|X] = −σ2

∑
i xi

n
∑

i x2i − (
∑

i xi)2
.

▶ The denominator n
∑

i

x2i − (
∑

i

xi)2 reflects the total variation of xi.

▶ More dispersion in xi ⇒ smaller variances of both estimates.
▶ The slope variance can be rewritten as Var[β̂1|X] = σ2/

∑
i

(xi − x̄)2.

▶ β̂1 is estimated more precisely when xi are spread out.
▶ The intercept variance depends on both spread and mean of xi.

▶ If x̄ is far from 0, Var[β̂0|X] increases.
▶ The covariance term is negative: Cov[β̂0, β̂1|X] < 0.

▶ When the slope rises, the intercept tends to fall to fit the same line.
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Gauss–Markov Theorem (OLS is BLUE)

We have shown that β̂ is a conditionally (and unconditionally) unbiased
estimator of β. Moreover, β̂ is a linear estimator, because it is linear in
parameters (Assumption A1).

Gauss–Markov Theorem
In the classical linear regression model with regressor matrix X, the least
squares estimator β̂ is efficient in the class of linear (conditionally) unbiased
estimators.

Formally, let b0 denote any other linear and conditionally unbiased estimator
of β. The Gauss–Markov Theorem states that:

Var[b0|X]− Var[β̂|X] is positive semidefinite.

Interpretation: This means that Var[β̂|X] is the smallest variance matrix in this
class. In other words, OLS has minimal variance ⇒ the Best in BLUE.
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Gauss–Markov Theorem: Proof (Setup)

Goal: Compare OLS β̂ = (X′X)−1X′y with any other linear, unbiased estimator
of β.

Step 1: Write the most general linear estimator.

b0 = Cy, where C is some (K+1)× n matrix of constants.

This is the most general way to express an estimator that is linear in the data
y. OLS corresponds to the specific choice C = (X′X)−1X′.

Step 2: Impose unbiasedness.

E[b0|X] = E[Cy|X] = CE[y|X] = CXβ.

For b0 to be unbiased, this must equal β for all possible β:

CXβ = β for all β ⇒ CX = IK+1.

This condition ensures b0 gives the right average value.

⇒ Any linear, unbiased estimator of β must satisfy CX = I. Next, we show
that OLS minimizes its variance among all such estimators.
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Gauss–Markov Theorem: Proof

Recap so far: We consider any linear unbiased estimator b0 = Cy satisfying
CX = IK+1.

Step 3: Compute variances (under A4: spherical errors).

Var[y|X] = σ2In (homoskedastic and uncorrelated errors).

Var[b0|X] = CVar[y|X]C′

= C (σ2In)C′ (A4: homoskedasticity & no autocorrelation)

= σ2CC′,

= σ2CC′,

Var[β̂|X] = σ2(X′X)−1.

Next: Compare these two variances by expressing C as the OLS part plus a
“correction” that keeps unbiasedness intact.
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Gauss–Markov Theorem: Proof (continued)

Step 4: Express C as OLS part plus deviation.
Let

D := C− (X′X)−1X′.

Since both C and (X′X)−1X′ satisfy CX = (X′X)−1X′X = I, we have

DX = 0.

⇒ The extra term D does not affect unbiasedness (because it drops out when
multiplied by X).

C := (X′X)−1X′ + D
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Gauss–Markov Theorem: Proof (contd.)

Step 5: Show that the variance difference is positive
semidefinite.

CC′ =
(
(X′X)−1X′ + D

)(
(X′X)−1X′ + D

)′
= (X′X)−1 + (X′X)−1X′D′ + DX(X′X)−1 + DD′

= (X′X)−1 + DD′ (since DX = 0),

so

Var[b0|X]− Var[β̂|X] = σ2(CC′ − (X′X)−1) = σ2DD′.
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Gauss–Markov Theorem: Conclusion
▶ Any linear, unbiased estimator can be written as

b0 = (X′X)−1X′y+ Dy, where DX = 0.

▶ Its conditional variance is

Var[b0|X] = σ2(X′X)−1 + σ2DD′.

Since σ2DD′ is positive semidefinite:

∀a, a′(σ2DD′)a = σ2∥D′a∥2 ≥ 0.

(Because a squared norm can never be negative.)

Under A1–A4 (classical linear regression model):
β̂ = (X′X)−1X′y has the smallest variance among all linear unbiased
estimators.

OLS is BLUE ⇒ Best (minimum variance), Linear, and Unbiased.

Intuition:
Any other linear unbiased estimator adds a “correction” Dy that does not
change the mean, but increases the variance by σ2DD′.
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Estimating the Error Variance

To compute Var[β̂ | X] = σ2(X′X)−1 we need an estimate of the unknown
error variance σ2.

Idea: Use the residuals e = y− ŷ as proxies for the true errors.

A conditionally unbiased estimator for σ2 is given by:

s2 =
e′e

n− (K+ 1)
.

Hence our estimate for Var[β̂ | X] is

V̂ar[β̂ | X] = s2(X′X)−1.
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Conditional Unbiasedness of s2

Recall the model:

y = Xβ + ε, E[ε | X] = 0, Var[ε | X] = σ2In.

OLS residuals are

e = y− Xβ̂ = (In − X(X′X)−1X′)y = My.

Since y = Xβ + ε,

e = M(Xβ + ε) = MXβ +Mε = Mε,

because MX = 0.

The total squared residuals measure remaining variation:

e′e = (Mε)′(Mε) = ε′M′Mε = ε′Mε,

since M′M = M.

To estimate the unknown variance σ2 = E[ε2i ], we average the squared
residuals over the n− (K+ 1) independent directions left after fitting K+ 1
parameters:

s2 =
e′e

n− (K+ 1)
=

ε′Mε

n− (K+ 1)
.
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Proving Conditional Unbiasedness of s2

We use two key trace facts for any scalar a′Ba:

a′Ba = tr(a′Ba) = tr(Baa′),

where a is (n× 1) and B is (n× n). The rule tr(AB) = tr(BA) allows
cyclic permutation inside the trace.)

Compute the conditional expectation of the residual sum of squares:

E[e′e | X] = E[ε′Mε | X] = tr
(
ME[εε′ | X]

)
.

Here:

▶ ε is (n× 1): The vector of disturbances,

▶ M is (n× n): The residual-maker matrix

▶ So ε′Mε is a scalar
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Proving Conditional Unbiasedness of s2

By Assumption A4 (spherical errors):

E[εε′ | X] = σ2In,

so the conditional covariance of ε is proportional to the identity.

Substitute and use tr(M) = n− (K+ 1):

E[e′e | X] = tr
(
ME[εε′ | X]

)
= σ2 tr(M) = σ2[n− (K+ 1)].

Therefore,

E[s2 | X] = 1

n− (K+ 1)
E[e′e | X] = σ2.

Conclusion: E[s2 | X] = σ2 ⇒ s2 is conditionally unbiased.
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Normality Assumption and Basic Inference

We now make use of Assumption A6:

ε | X ∼ N (0, σ2In).

Theorem (see Greene, Thm. B-103)
If z ∼ N (µ,Σ) then

Az+ d ∼ N (Aµ+ d, AΣA′).

We apply this theorem to

β̂ = β + (X′X)−1X′ε.

With A = (X′X)−1X′ and conditional on X, it follows that

β̂
∣∣X ∼ N

(
β, σ2(X′X)−1) .

And for each element of β̂:

β̂k
∣∣X ∼ N

(
βk, σ

2[(X′X)−1]
kk

)
.
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4.2.2 Testing



Testing a Hypothesis about a Coefficient

We want to test
H0 : βk = βk,0.

Under the normality assumption we can make use of the following test
statistic:

zk =
β̂k − βk,0√
σ2 (X′X)−1

kk

.

Conditionally on X, this statistic is standard normal:

zk | X ∼ N (0, 1).

Problem: We do not observe σ2. What is the distribution of the test statistic if
we replace σ2 by s2?
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Distribution of s2 and Independence

Theorem (see Greene, Thm. B.8)
If z ∼ N (0, I) and A is idempotent, then z′Az has a chi-squared distribution
with degrees of freedom equal to the rank of A.

We apply this theorem to

(n− (K+ 1))s2

σ2
=

e′e
σ2

=
( ε
σ

)′
M
( ε
σ

)
,

which conditionally on X is

χ2(n− (K+ 1)).

Theorem (see Greene, Thm. 4.4)
If ε is normally distributed, then the least squares estimator β̂ is statistically
independent of the residual vector e and therefore of all functions of e,
including s2.
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Independence of Numerator and Denominator

The statistic:

tk =
β̂k − βk,0√
s2(X′X)−1

kk

.

follows a t–distribution. We need two ingredients to show this:

1. the numerator and denominator have the right marginal distributions,
and

2. they are independent.

We already know that

(n− (K+ 1))s2

σ2
=
( ε
σ

)′
M
( ε
σ

)
∼ χ2(n− (K+ 1)).

Next: Are
β̂k − βk

σ
√

(X′X)−1
kk

and s2

σ2

independent?
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Independence of Numerator and Denominator: Express in ε

Start from the linear model

y = Xβ + ε, ε ∼ N (0, σ2I).

Then
β̂ = (X′X)−1X′y = β + (X′X)−1X′ε,

and
e = My = Mε, M = I− X(X′X)−1X′.

Hence, the random parts of the t-statistic are:

β̂ − β

σ
= (X′X)−1X′ ε

σ
,

e′e
σ2

=
( ε
σ

)′
M
( ε
σ

)
.

Both are functions of the same random vector ε/σ, so we test independence
via their covariance.
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Independence of Numerator and Denominator: Covariance Derivation

The denominator s2 is a quadratic form in ε:

s2 =
1

n− (K+ 1)
ε′Mε.

The numerator (β̂ − β) is a linear form in ε:

β̂ − β = (X′X)−1X′ε.

For multivariate normal ε, a standard result says:

Lemma (Greene, Thm. B.12)
If Aε and Bε are jointly normal and E[(Aε)(Bε)′] = 0, then Aε and (Bε)′(Bε) are
independent.
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Independence of Numerator and Denominator: Covariance Derivation

Hence we only need to check that the linear components
generating numerator and denominator are uncorrelated:

Cov
(
M

ε

σ
,
β̂ − β

σ

)
= 0.

Substitute
β̂ − β

σ
= (X′X)−1X′ ε

σ
:

E

[
M

ε

σ

(
β̂ − β

σ

)′]
= E

[
M

ε

σ

( ε
σ

)′
X(X′X)−1

]
.
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Independence of Numerator and Denominator: Evaluation

Using E[ ε
σ
(
ε

σ
)′|X] = I because ε ∼ N (0, σ2I),

E
[
M ε

σ

( ε
σ

)′
X(X′X)−1

∣∣∣X] = MX(X′X)−1.

Recall M = I− X(X′X)−1X′, hence

MX = X− X(X′X)−1X′X = X− X = 0.

Therefore,

MX(X′X)−1 = 0 ⇒ Cov
(
M ε

σ
,
β̂ − β

σ

)
= 0.

Implication: The vectors Mε/σ and (β̂ − β)/σ are uncorrelated, and under
normality, this means they are independent.

Consequently,

β̂ − β

σ
is independent of e′e

σ2
=
( ε
σ

)′
M
( ε
σ

)
.

Conclusion: The numerator and denominator of the t–statistic are
independent, completing the proof that

tk ∼ tn−(K+1).
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t-distribution compared to Normal distribution
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t-distribution compared to Normal distribution

Normal(0,1): 1.96

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Degrees of freedom

t 0
.9

75

Critical Value t0.975 as df increases

49 / 77



Numerical Example: Computing a t–Statistic

Data:

X =


1 1
1 0
1 1
1 0

 , y =


2.4
2.7
2.9
3.1

 .

OLS Estimates:

β̂0 = 2.9,

β̂1 = −0.25,

se(β̂1) = 0.3202

Manual computation:

t = β̂1 − 0

SE(β̂1)
=

−0.25

0.3202
= −0.78

Decision:

|t| = 0.78 < t0.975,2 = 4.30

⇒ Fail to reject H0 : β1 = 0.

95% Confidence Interval for β1:

CI95%(β1) = β̂1 ± t0.975,2 × se(β̂1)

= −0.25± 4.30× 0.3202

= −0.25± 1.38

⇒ CI95%(β1) = [−1.63, 1.13].
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Simualtion of Confidence Intervals across Samples

Simulation setup:
▶ True model:

yi = β0 + β1xi + εi

▶ β1 = 1.5, εi ∼ N(0, 1)
▶ n = 30 observations per

sample
▶ Draw 100 Samples

Interpretation:
▶ Each line: 95% CI for β̂1 from

one sample
▶ Dashed line: true β1

▶ Blue: interval covers β1

▶ Red: interval misses β1

▶ About 95% of CIs contain the
truth: Here exactly 5 miss

0

25

50

75

100

0 1 2 3

β̂1

Contains true value? FALSE TRUE

Each line = one sample's 95% CI for slope β1; dashed line = true β1

Monte Carlo Illustration of 95% Confidence Intervals
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Testing Multiple Linear Restrictions

Instead of testing a single coefficient, we may want to test

H0 : Rβ = q

where
▶ R is an r× K+ 1 restriction matrix of full row rank
▶ q is an r× 1 vector
▶ r = number of linear restrictions (e.g., r = 2 means testing 2

equations jointly)

Examples:

▶ H0 : β1 = β2 = 0 ⇒ R =

[
0 1 0 0
0 0 1 0

]
, q =

[
0
0

]
▶ H0 : β1 = β3 ⇒ R =

[
0 1 0 −1

]
, q =

[
0
]

(Assuming β = [β0, β1, β2, β3]
⊤ where β0 is the intercept.)
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Testing Multiple Linear Restrictions (contd.)

We want to test r linear restrictions on the regression
coefficients:

H0 : Rβ = q, R is r× K, q is r× 1.

Idea:
▶ Compare model fit between

1. the unrestricted model (no restrictions), and
2. the restricted model where Rβ = q holds exactly.

▶ If H0 is true, the restricted model should not fit much worse.
The F-statistic formalizes this comparison.
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Unrestricted Least Squares

The unrestricted OLS estimator solves

min
β

(y− Xβ)′(y− Xβ) ⇒ β̂UR = (X′X)−1X′y.

Under the classical linear model

y = Xβ + ε, E[ε|X] = 0, Var(ε|X) = σ2In,

we have
β̂UR | X ∼ N

(
β, σ2(X′X)−1

)
.

Residuals:
eUR = y− Xβ̂UR.
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Restricted Least Squares: Setup

Now impose the restrictions Rβ = q and solve

min
β

(y− Xβ)′(y− Xβ) s.t. Rβ = q.

Use the Lagrangian:

L(β, λ) = (y− Xβ)′(y− Xβ) + 2λ′(Rβ − q),

where λ is an r× 1 vector of multipliers.

First-order conditions:

−2X′(y− Xβ) + 2R′λ = 0,

Rβ − q = 0.
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Solving for the Restricted Estimator (Step 1)

We start from the first-order conditions under linear restrictions:[
X′X R′

R 0

] [
β̂R

λ̂

]
=

[
X′y
q

]
.

▶ The upper block gives the normal equation with Lagrange
multipliers:

X′Xβ̂R + R′λ̂ = X′y.

▶ The lower block encodes the restriction:

Rβ̂R = q.

▶ Substituting X′y = X′Xβ̂UR (from the unrestricted OLS
estimator) yields:

R′λ̂ = X′X(β̂UR − β̂R).
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Solving for the Restricted Estimator (Step 2)

From
R′λ̂ = X′X(β̂UR − β̂R),

post-multiply by (X′X)−1R′ and rearrange to isolate λ̂:

λ̂ = [R(X′X)−1R′]−1(Rβ̂UR − q).

Substitute this expression back into the first equation to obtain:

β̂R = β̂UR − (X′X)−1R′[R(X′X)−1R′]−1(Rβ̂UR − q).

▶ The correction term projects the unrestricted estimate
onto the subspace that satisfies Rβ = q.

▶ The matrix (X′X)−1R′[R(X′X)−1R′]−1 adjusts β̂UR just
enough to enforce the restrictions.
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Distribution of the Numerator

Under H0 : Rβ = q,

Rβ̂UR − q = R(β̂UR − β) ∼ N
(
0, σ2R(X′X)−1R′).

Then the quadratic form

1

σ2
(Rβ̂UR − q)′[R(X′X)−1R′]−1(Rβ̂UR − q) ∼ χ2

r .

Interpretation: This measures how far the sample estimates
Rβ̂UR are from the hypothesized values q, scaled by their
sampling variance.
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Constructing the F–Statistic

The unbiased estimator of σ2 from the unrestricted model is:

s2 =
e′UReUR
n− K

,
(n− K)s2

σ2
∼ χ2

n−K.

Since X′M = 0, this χ2
n−K term is independent of (Rβ̂UR − q).

Therefore:

F =

[
(Rβ̂UR − q)′[R(X′X)−1R′]−1(Rβ̂UR − q)/r

]
s2

=
χ2
r /r

χ2
n−K/(n− K)

∼ F(r, n− K).

Interpretation: The numerator captures the fit loss from
imposing Rβ = q; the denominator measures the unexplained
variance. Under H0, their ratio follows an F distribution.
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Alternative Expression of F-statistic

The F–test can also be written in terms of restricted and
unrestricted regression fits:

F =

(
SSRR − SSRUR

)
/r

SSRUR/(n− K)
.

where
▶ SSRUR = sum of squared residuals from unrestricted model
▶ SSRR = sum of squared residuals from model estimated

under H0

▶ r = number of restrictions

Intuition: If restrictions are correct, forcing them should not
increase SSR “too much.” If SSRR is much larger than SSRUR, H0

is rejected.
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Special Cases of the F-test

▶ r = 1: F–test reduces to the squared t–test

F(1, n− K) ≡ t2(n− K).

▶ Joint significance of all slope coefficients:

H0 : β2 = β3 = · · · = βK = 0.

This is the test of “overall significance” of the regression.

Summary:
▶ t–test: single restriction
▶ F–test: multiple restrictions
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4.2.2: OLS in Large Samples



Roadmap for 4.2.2

What we cover (sketches, intuition first; proofs optional):
1. Consistency of OLS: fixed X vs. random X.
2. Asymptotic normality of β̂.
3. White (heteroskedasticity-robust) variance: the “sandwich”.
4. Homo- vs. heteroskedasticity in large n (what changes?).
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Convergence in Probability

Convergence in Probability

A sequence of random variables Zn converges in probability to
Z if

Zn
p−→ Z ⇔ ∀ε > 0 : P(|Zn − Z| > ε) → 0 as n → ∞.

Useful Rules for convergence in probability:
If Xn

p−→ a and Yn
p−→ b, then:

▶ Xn + Yn
p−→ a+ b

▶ XnYn
p−→ ab

▶ If b ̸= 0, then Xn
Yn

p−→ a
b

▶ If g(·) is continuous at a, then g(Xn)
p−→ g(a) (Continuous

Mapping Thm.)
Why important? Lets us manipulate probability limits just like
ordinary limits
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Consistency of an Estimator

Definition: An estimator θ̂n of parameter θ is consistent if

θ̂n
p−→ θ.

Intuition: As sample size grows, θ̂n gets arbitrarily close to the

true θ with high probability.

Key ingredients to show consistency:
▶ Law of Large Numbers (LLN)
▶ Exogeneity assumptions:

Errors have mean zero conditional on regressors
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Law of Large Numbers (LLN)

(Weak) Law of Large Numbers

If {Zi}ni=1 are IID with E[Zi] = µ and Var(Zi) < ∞, then

Z̄n =
1

n

n∑
i=1

Zi
p−→ µ.

Interpretation: The sample average gets arbitrarily close to the
population mean as n grows.

Examples:
▶ Toss a coin: Z̄n = share of heads p−→ 0.5.
▶ Regression context:

1
n

∑
xiεi

p−→ E[xiεi] = 0.
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Consistency of OLS (Sketch of a proof)

Recall
β̂ = (X′X)−1X′y = β + (X′X)−1X′ε.

Rewrite:
β̂ − β =

(
1
nX

′X
)−1(

1
nX

′ε
)
.

▶ By LLN: 1
nX

′X p−→ Q (positive definite).

▶ By LLN: 1
nX

′ε = 1
n

∑
xiεi

p−→ 0 if E[xiεi] = 0 (exogeneity).

Therefore,
β̂

p−→ β + Q−1 · 0 = β.

Conclusion: b is a consistent estimator of β.
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CLT and Convergence in Distribution

Convergence in distribution: Zn
d−→ Z means that the

distribution of Zn approaches that of Z as n → ∞.

Central Limit Theorem (CLT): If {Zi} are IID with E[Zi] = 0,
Var(Zi) = σ2 < ∞, then

√
nZn =

1√
n

n∑
i=1

Zi
d−→ N (0, σ2).

Implication for regression: Sums of random vectors like
1√
n

∑
xiεi become approximately normal for large n.
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Ingredients for Asymptotic Normality
To study the large-sample behavior of β̂, we decompose

√
n(β̂ − β) =

(
1
n

n∑
i=1

xix′i
)−1(

1√
n

n∑
i=1

xiεi
)
.

We need two ingredients for this expression to have a limiting distribution:

1. Regressor matrix (LLN):

1

n

n∑
i=1

xix′i
p−→ Q = E[xix′i ], Q ≻ 0.

2. Score term (CLT):

1√
n

n∑
i=1

xiεi
d−→ N (0,Σ), with Σ = E[ε2i xix′i ].

Here Σ = Var(xiεi) is the variance of the score term.

Moment and exogeneity conditions:
▶ E[εi | xi] = 0 (exogeneity)
▶ E[∥xi∥2] < ∞, E[ε2i ∥xi∥2] < ∞

These ensure the LLN and CLT apply.
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A Quick Reminder: Slutsky’s Theorem
Goal: Combine convergence in probability and convergence in distribution.

If
Xn

d−→ X and Yn
p−→ c,

then
YnXn

d−→ cX and Xn + Yn
d−→ X+ c.

Intuition:
▶ Random parts (Xn) have limiting distributions.
▶ Deterministic parts (Yn) “settle down” to constants.
▶ Together: stable + random ⇒ same limit shape, scaled by the constant.

Here: (
1
n

∑
xix′i
)−1

︸ ︷︷ ︸
p−→Q−1

(
1√
n

∑
xiεi
)

︸ ︷︷ ︸
d−→N (0,Σ)

d−→ N (0,Q−1ΣQ−1).

(Covariance transforms as CΣC′ when a normal vector Z∼N (0,Σ) is multiplied by a
matrix C; here C = Q−1 , hence Q−1ΣQ−1.)
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Why A6 (Normality) is No Longer Needed

Recall A6: u|X ∼ N (0, σ2In) implied exact finite-sample
normality of β̂.

Asymptotics replace A6:
▶ By LLN: 1

n

∑
xix′i

p−→ Q.

▶ By CLT: 1√
n

∑
xiεi

d−→ N (0,Σ).

▶ Slutsky’s theorem ⇒
√
n(β̂ − β)

d−→ N (0,Q−1ΣQ−1).

Key takeaway: Even without normal errors, OLS is
asymptotically normal. Exact inference (t, F) requires A6, but
robust asymptotic inference does not.
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Heteroskedasticity-Robust Variance (White)

Goal:
Do away with homoskedasticity assumption:
Estimate AVAR(β̂) = 1

n Q−1ΣQ−1 without assuming
homoskedasticity.

White (HC0) estimator

V̂arrob(β̂) = (X′X)−1
( n∑

i=1

xix′i e
2
i

)
(X′X)−1.

Variants (finite-sample tweaks): HC1, HC2, HC3.

Sandwich picture:
bread (X′X)−1 - toppings

∑
xix′ie

2
i - bread (X′X)−1
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What’s in the Sandwich?

Bread: (X′X)−1 comes from the usual OLS normal equations

Toppings (the filling): ∑
i

xix′ie
2
i

▶ Each observation i contributes xix′ie
2
i .

▶ e 2
i plays the role of an observation-specific variance.

▶ xix′i spreads that variance across all covariates according
to their values.

Takeaway:
The bread pieces come from the model structure; the filling
captures how noisy each observation actually is.
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Heteroskedasticity-Robust Variance (White)

Practical note
In applied work, it is common to report robust
(heteroskedasticity-consistent) standard errors by default, since the
homoskedasticity assumption rarely holds. Variants (HC1–HC3)
mainly differ in small-sample adjustments, but all are asymptotically
valid.

Extensions for dependent or structured errors:
▶ Cluster-robust: allows arbitrary correlation within clusters (e.g.

firms, regions, individuals), but assumes independence across
clusters.

▶ HAC / Newey–West: heteroskedasticity- and
autocorrelation-consistent, for time series with serial correlation.

▶ Spatial-robust: allows correlation decaying with distance (e.g.
Conley standard errors).

▶ Panel-robust: combinations of clustering across two
dimensions (e.g. firm and time).
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How the Other Sandwiches Look Like

Same recipe, different fillings:
All robust estimators share the general sandwich form

V̂ar(β̂) = (X′X)−1
(∑

i,j

xi Ω̂ij x′j
)
(X′X)−1,

where Ω̂ encodes the assumed error covariance structure.

Estimator Toppings (middle term)

White (HC) Ω̂ij = 0 if i ̸= j; Ω̂ii = e2i
Cluster-robust Ω̂ = blockdiagg(X

′
gege′gXg)

HAC / Newey–West Ω̂ij decays with |i− j| (serial correlation)
Spatial-robust (Conley) Ω̂ij decays with distance dij

Two-way cluster Sum of two clustering dimensions minus overlap
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Asymptotic t for single coefficients

Null: H0 : βk = βk,0. Robust s.e.: ŝerob(β̂k) =

√
V̂arrob(β̂)kk.

trobk =
β̂k − βk,0

ŝerob(β̂k)

d−→ N (0, 1).

Interpretation:
Use standard normal critical values asymptotically; in practice,
software often reports t with df n− K but based on robust s.e.
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Homo- vs. Heteroskedasticity (large n)

Homoskedasticity Heteroskedasticity

Consistency of β̂ Yes Yes

Asymptotic Var(β̂) σ2Q−1 Q−1ΣQ−1

SE to use classical (X′X)−1s2 robust (White/HC)

t/F classical valid robust t, Wald/F
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