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4.1.1: FWL Theorem in Equation Algebra




From the multivariate to the bivariate regression

Yi = Bo + BaXo i+ B1X1i + €
where x, ; is the regressor of interest and x, ; is a control.

Frisch-Waugh-Lovell (FWL): The coefficient on x,; and the
residuals from the full model are exactly recovered by either

(a) aregression using partialled—out variables:
Yi = Bo + BaXaj + i,
(b) a regression using residualized variables:

Uyj = Paly; + ;.
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Why is the decomposition useful?

The Frisch-Waugh-Lovell theorem is useful because it lets us study
the effect of one regressor while controlling for others in a simple
way:

» We can visualize the relationship between y; and x, ; in a
two—dimensional scatter plot, once we have partialled out
control variables.

» We can partial out high-dimensional controls (e.g. fixed effects)
to reduce computation time. This is the principle behind
commands such as reghdfe in Stata.

» We can separate two sources of variation:

1. variation in X2 ; explained by x; ;, and
2. how y; responds to the part of x, ; orthogonal to x; ;.

» It clarifies where omitted variable bias comes from, by showing
exactly how the correlation between x; ; and x, ; matters.
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How to partial out x; ;

Step 1 (project x> ; on Xy ):
X2,i = Yo + Y1X1,i + Uz, Ui L Xq,.
Step 2 (project y; on x; ;):
Vi = b0+ b1x1, + Uyi, Uy L Xq.
Step 3 (define partialled—out variables, keep intercepts):

Xa,i = 4o + Uz, i i= 0o + Uy,

Bivariate regression on adjusted variables: ‘ Vi = Bo+ BoXoi+&i
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Frisch—Waugh-Lovell theorem (statement)

For the model

Yi = Bo + BaXoj + B1X1i + €

the following two bivariate regressions yield the same 35 and
residuals as the full model:

Vi=Bo+ BoXoj+&,  Uyi=Paliaj+e (nointercept).

Hence, working with partialled—out variables (keeping intercepts) or
with residuals (dropping intercepts) is equivalent for estimating 3,
and ¢;.
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Partialled-out variables reproduce the full model

Show that
Yi = Bo + Baxai+ BiX1,i + € M
Yi = Po + BiXa,i+ & 2)
Plug in the projections
Yi= do + 51X1,i + Uy, X2i = 4o + Y1X1,i + Uz,

into equation (1):

Yi= 80 + 31X1,i + Uy,
= fo + B2(Fo + Y1X1,i + Uzi) + BiX1i + i,
¥i = 00 + Uy = Bo + B2 (50 + Uz,i) + (BaAn — 81 + B1)xu,i + &

Because we partialled out x; ; using OLS, x; ; is mechanically uncorrelated
with us ; and with uy ;. Therefore the regression coefficient on the
partialled—out variable x; ; is zero. The equation simplifies with X2 ; = 40 + Ua,
to

yi= o + uyi = Bo + B2(%o + Us2;) + &i.
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Partialling out only x5

If we partial out x5 ; but not y;, then
X2,i = Yo + 71 X1,i + Uz, Xaj =0 + Uz
The regression becomes

Yi = 0o+ 01Xy + Uy,
= (Bo+ 01X1) + BaXa,i+ (i + 01X1,)
= K-+ ﬂgf(g),’ + €. (1)

Here the intercept «, the residuals ¢;, and the standard errors differ
from the full model. But the slope /3, on x, ; is unchanged.
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Residualized variables

From the partialled—out form we have
Yi=00+U, = o+ Pa(yo+ Uszj)+ i
Subtract dg:
Ui = fo— 20 + Bayo + Bz + €.
But by the projection identities,
Bo — do + 270 = 0,

so the constant term cancels.
Thus we obtain the residualized regression:

‘ Uyj = Pals i+ € ‘

This is the Frisch—Waugh-Lovell theorem in residualized form:
regressing uy; on u, ; (without intercept) recovers the same f3, as the
full model.
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4.1.2: FWL Theorem in Matrix Notation




Why P and M will keep showing up

OLS always decomposes the vector of outcomes y into two
orthogonal components:

y= Pxy + Mxy ;
~—~— ~—
projection onto regressors  orthogonal residuals

where the matrices
Py = X(X'X)~'X’, My =1— Py
have the following properties:

> Py is a projection matrix that maps y onto the column space of
X.

» My is a residual-maker matrix that removes all variation in y
explained by X.

» Both are symmetric and idempotent: Py = Px, P3 = Px, and
similarly for My.

Key idea for FWL: If we split X into (X3, X>), we can first remove the
influence of X; using My,, then run a regression on the part of X, that

is orthogonal to X;. .
177



Review: Partition of y

The OLS model y = X3 + e can be written in matrix form as:
y=y+e=Pxy+My.
This partitions y into two orthogonal pieces:

> Pyy: The fitted part, spanned by columns of X

> Myy: The residual part, orthogonal to all columns of X

Each term has a clear dimension and meaning:
» y.n x 1 vector of data
» Py:n x n projection matrix
» My: n x nresidual-maker matrix
> e:n x 1 vector of residuals

Orthogonality condition: X'e = 0. This is what ensures that OLS
residuals are uncorrelated with the regressors.
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Decomposing the Normal Equations

OLS minimizes |y — X3||?, which leads to the normal equations
X'X3 =Xy.
If X is composed of two sets of regressors (X;, Xs), we can write this

in block form: .
)(1)(1 )(i)(g [?1 _ )(&]/
XoXi XoXs| |Bo] | Xoy)

This gives two matrix equations:
X\X181 + X\ X202 = Xiy @)
X,X1 31 + XoXo 35 = Xoy 3)

Goal: Derive an expression for 3, that no longer depends on 3. This
is the essence of the FWL theorem in matrix form.
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Step 1: Solve for 3,

Starting from Equation (2):
X, X131 + X X232 = Xiy.

We isolate 3;: A A
X1 X181 = X1y — X\ X232,

and multiply by (X} X;)~%:
Br = (XiX1) "' Xiy — (XiX1) " X, X235

Interpretation: The first term is the coefficient from regressing y on
X, only; the second adjusts for how X5 overlaps with X .
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Step 2: Substitute into the second equation

Plug the expression for 3; into Equation (3):
XoX1 31 + XoXo B2 = Xby.
Substitute B; = (X)X1) ' X, (y — X2032):
XoX1 (X0 X1) 7 X (y — Xo82) + XoXo 82 = Xby.
Expand:
XoX1 (X0 X1) 71Xy — XX (X\X1) 7 X  Xo B2 + XuXa B2 = Xby.

Next step: Recognize a familiar projection matrix inside this
expression.
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Step 3: Identify the projection matrix

The term X, (X} X;)~'X] is the projection matrix Py, . Use this to
rewrite: R .

X5Px,y — X5Px, X232 + X5X282 = Xoy.
Now add and subtract X,IX,3, to reveal an (I — Py, ) structure:

Xy (I = Px, )y = Xy (I — Px, ) X235
Recognize (I — Py, ) as the residual-maker matrix My, :
X,My,y = X,Myx, X235

Finally, solve for 3s:

ﬁ2 = (XI2MX1X2)_1XI2MX1y'
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Step 4: Interpretation of the result

We have derived the key matrix formula for the FWL theorem:

62 = (XI2MX1X2)_1X12MX1y .

Note that My, is symmetric and idempotent:
My, = My, My, = My My, .
Thus we can rewrite:
Ba = ((Mx, X2)' (Mx,X5)) ™" (Mx, X2)' (Mx, ).
Interpretation:
> X, = My, X>: residuals from regressing X, on X;.
> y = My, y: residuals from regressing y on Xj.

So we can write simply:

B2 = (X,X2) ' XLy.
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What FWL tells us about omitted variable bias

FWL gives a clear view of what happens when we omit relevant
regressors.

Setup: Partition the true regressor matrix as

X =[X1Xz2],
where X; are included and X5 are omitted variables in the short
regression }

y=X181+E

By the Frisch—Waugh—Lovell theorem,
B = (XiX1) ' Xy = B1 + (XiX1) " X{ X2
Interpretation:
» The bias term (X} X;) !X X2 /3, arises from projecting X, onto X;.
» Omitted variables X, matter for 3; only if both:

X1 Xs # 0 (there is correlation between regressors)
B2 # 0 (omitted variables matter for y).
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Simplified Bivariate Perspective

Consider the true model with one included and one omitted regressor:
Vi = BiX1i+ BaXa i+ €.
If we omit x5 ; and estimate
Yi= leu + &,
the FWL decomposition implies
~ cov(Xq,X2)

B1=B1+ B var(x1)

Interpretation:
» The second term is the omitted variable bias.
» Bias is positive if x; and xo move together and both raise y.
» Bias is zero if either:

COV(Xl,XQ) =0 or 62 =0.
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FWL perspective on OVB: Projections

FWL shows: Bias is just the influence of X, transmitted through its
correlation with X;. We can also show it as projection problem.

Step 1: Regress X, on Xi:
Xo = Py, Xo + Mx, Xa,

where Py, X, is the part of X, explained by X;.

Step 2: The short regression omits My, Xs, but keeps Py, X5 through
correlation with X;.

Implication:

» The bias equals the effect of the omitted variable (3,) times how
strongly Xs is embedded in X;.

» When X; and X, are orthogonal, Px, X5 = 0 and no bias arises.
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4.2: OLS Properties




Finite Sample Properties of OLS (due to A1-A5)

Under Assumptions A1-AS5 (linearity, rank, exogeneity, spherical errors,
nonstochastic X) the following holds for OLS:

» Unbiasedness: R
E[pIX] =8
» Variance: A
Var[|X] = a2(XX) ™"
> Gauss—Markov Theorem: Among all linear unbiased estimators, 3 has
the smallest variance (BLUE).

» Orthogonality: /3 is uncorrelated with residuals e; fitted values y and
residuals e are orthogonal.
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Distribution under Assumption A6 (Normality)

Recall: With A1-A5 we have
» OLS is unbiased
» Variance formula: Var[3|X] = o2 (X'X) !
> OLS is BLUE (Gauss—Markov theorem)

Additional Assumption A6:

elX ~ N(0,0°1n).

Implications for finite-sample distribution:
> BIX ~ N (8,0 (X'X) ™)
» t-and F-statistics have exact finite-sample distributions

Interpretation: A6 is not needed for unbiasedness or efficiency. But it delivers
exact finite-sample inference.

20/77



4.2.1: Finite Sample Properties




Unbiased Estimation

The least squares estimator can be written as function of the population
regression line:

B = XXXy = XX)'XXB+¢e) = B+ XX)'Xe
Now, taking the conditional expectation yields
EBIX] = B+EXX)"'X'e|X] = B+ (XX)"'XE[|X]

= [ by assumption A3: Exogeneity

Applying the law of iterated expectation shows

E[B) = E[EBIX)] = E[8) = B
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Variance of Least Squares Estimator

B =B+ XX)'Xe
The conditional variance of 3 is
VarlB1X] = E[ (8 — EIBX)(3 — EIBX)’ | X]
E[(B—8)(B—8)|X] (since E[BIX] = 5 by A3)
E[((XX)Xe) (XX)'X'2)" | X]
E[(

XX)‘1X e’ X(X'X) ™" | X]
X'X)"'x E[sa IX]X(X'X) !
= X'X)"'X %1, X(X'X)™" by Assumption A4: Homoskedasticity

a2X'X)h
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Law of Total Variance

For any random vector Z and information set X,
Var([Z] = E[Var[Z|X]] + Var(E[Z|X]).
Proof:
Var|Z] = E[(Z - E[Z))(Z - E[Z))"]
= E[(Z — E[ZIX] + E[ZIX] — E[Z])(Z — E[Z|X] + E[Z|X] — E[Z])']

E[(Z — E[Z1X])(Z - E[ZIX))']
+ E[(E[Z|X] — E[Z]) (E[Z|X] — E[2])']

+2E((Z - E[Z|X])(E1Z1X] - E[Z])'] -

The cross term vanishes because E[Z — E[Z|X] | X] = 0. Thus,
Var[Z] = E[Var[Z|X]] + Var(E[Z|X]).

Interpretation: The total variance equals the average of conditional variances
plus the variance of conditional means.
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Unconditional Variance of OLS Estimator

We still have to derive the unconditional variance of 3. By the law of total
variance,

Var[f] = E[Var[B\X]] + Var(E[/§|X])
=Ho*(X'X)™"] + Var[g]
_ 02E[<X/X)—1]7

since population paramter 3 is nonrandom.
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Intuition for OLS Variance

Key idea: The variance of OLS reflects how much 3 would change if we drew
a new sample.
> Residual variance o2 = “background noise” in y.
» Matrix (X'X) ! = “information in X":
> More spread in X = (X'X) larger = variance of 3 smaller.
> Little variation or multicollinearity = (X'X)~' large =
variance of /3 large.

» Together: R
Var[8]X] = a*(X'X) !
balances signal in regressors vs. noise in errors.

Analogy: Estimating a mean: more observations = smaller variance. In
regression, it's the same idea, but “information” comes from regressor
variation.
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Why (X’X)~! Reflects the Covariance Structure of the Regressors

N xn D Xe ) Xk
i i i
2

Sxn D XA D XX o Y XiXi

i i i i
2

X'X = Z Xi2 Z XiaXi1 Z Xig Z Xi2Xik

i i i i

2
Z Xik Z XikXi1 Z XikXi2 -~ Z Xik
L i i i i

Intuition:

» X'X/n collects raw (uncentered) second moments of the
regressors. Although it's not yet in the familiar form, it fully
encodes the variances and covariances of the X.

» Centering would just adjust by the means.
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Sidenote: Structure of X'y

- Z i
i
any,'

1
Xy= Z Xi2Yi
i

ZXIKYI
L | .

Intuition:

» X'y collects the raw (uncentered) cross-moments between each
regressor and the outcome y.

» This mirrors the structure of X’'X, but for the relationship
between X and y.

» Centering would only adjust for means, not the underlying
covariance structure.
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The Variance—Weights Matrix (X'X) ! in a bivariate case

For the bivariate model with intercept
Yi = Po + BiXi + i,

H; T
' g 2x,

we have

The inverse is

le_z —ZX:‘

(X’X)_l = nzi Z X: ZXI r;

Thus, the covariance matrix of OLS estimates is

4 ) E X =D X
0 2 /vy —1 g i
Var ~ =0 XX :— !
H 00 = e - le "
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The Variance—Weights Matrix (X'X) ! in a bivariate case

Entries: )
DX
nyox; — (30x)?
n

n3oxt — (2x)*

DX
N2 —(32x)*

The denominator n» " x7 — (3 _ x;) reflects the total variation of x;.

1 1
> More dispersion in x; = smaller variances of both estimates.

Var[Bg|X] =2
Var[41|X] = o2

CovlBo, BiIX] = o>

v

v

The slope variance can be rewritten as Var[3:(X] = %/ > (x; — X).
i

> Bl is estimated more precisely when x; are spread out.

v

The intercept variance depends on both spread and mean of x;.
> If x is far from 0, Var[3,|X] increases.

v

The covariance term is negative: Cov[fo, 41 |X] < 0.
> When the slope rises, the intercept tends to fall to fit the same line.
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Gauss—Markov Theorem (OLS is BLUE)

We have shown that j is a conditionally (and unconditionally) unbiased
estimator of 5. Moreover, 3 is a linear estimator, because it is linear in
parameters (Assumption A1).

Gauss—Markov Theorem

In the classical linear regression model with regressor matrix X, the least
squares estimator £ is efficient in the class of linear (conditionally) unbiased
estimators.

Formally, let by denote any other linear and conditionally unbiased estimator
of 8. The Gauss—Markov Theorem states that:

Var[bo|X] — Var[3|X] is positive semidefinite.

Interpretation: This means that Var[3|X] is the smallest variance matrix in this
class. In other words, OLS has minimal variance = the Best in BLUE.
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Gauss—Markov Theorem: Proof (Setup)

Goal: Compare OLS 3 = (X'X) ' X'y with any other linear, unbiased estimator
of 5.

Step 1: Write the most general linear estimator.
by = Cy, where C is some (K+1) x n matrix of constants.

This is the most general way to express an estimator that is linear in the data
y. OLS corresponds to the specific choice C = (X'X) ' X'.

Step 2: Impose unbiasedness.
Elbo|X] = E[Cy|X] = CE[y|X] = CXB.

For by to be unbiased, this must equal 3 for all possible j:

CX3=p forall3 =

This condition ensures b, gives the right average value.

= Any linear, unbiased estimator of 3 must satisfy CX = I. Next, we show
that OLS minimizes its variance among all such estimators.
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Gauss—Markov Theorem: Proof

Recap so far: We consider any linear unbiased estimator b, = Cy satisfying
CX = Ix41-

Step 3: Compute variances (under A4: spherical errors).

Varly|X] = oI, (homoskedastic and uncorrelated errors).

Var[bo|X] = C Var[y|X] C’
=C (o’ C (A4: homoskedasticity & no autocorrelation)
=o°CC,
=co2cC,

Var[3|X] = o> (X'X)"".

Next: Compare these two variances by expressing C as the OLS part plus a
“correction” that keeps unbiasedness intact.
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Gauss—Markov Theorem: Proof (continued)

Step 4: Express C as OLS part plus deviation.
Let
D:=C-(XX)"'X.
Since both C and (X'X) ' X’ satisfy CX = (X'X) "' X'X = I, we have
DX = 0.

= The extra term D does not affect unbiasedness (because it drops out when
multiplied by X).
C:=XX)"'X' +D
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Gauss—Markov Theorem: Proof (contd.)

Step 5: Show that the variance difference is positive
semidefinite.

CC' = ((X'X)~'X' + D) (X'X)"'X' + D)’
= (X'X)"' + (X'X)"'X'D’ + DX(X'X)"! + DD’
= (X'X)"' + DD’ (since DX = 0),

SO

Var[bo|X] — Var[3|X] = 0%(CC’' — (X'X)~') = 42DD'.
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Gauss—Markov Theorem: Conclusion

» Any linear, unbiased estimator can be written as
bo = (X'X)"'X'y + Dy, where DX = 0.
> Its conditional variance is
Var[bo|X] = o*(X'X) ™" 4 o°DD’.

Since o°DD’ is positive semidefinite:
Va, a'(¢°DD')a = c”||D’a||® > 0.
(Because a squared norm can never be negative.)

Under A1-A4 (classical linear regression model):
B = (X'’X)~"'X'y has the smallest variance among all linear unbiased
estimators.

OLSisBLUE = Best (minimum variance), Linear, and Unbiased.

Intuition:

Any other linear unbiased estimator adds a “correction” Dy that does not
change the mean, but increases the variance by a2DD’.
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Estimating the Error Variance

To compute Var[3 | X] = o*(X'X) " we need an estimate of the unknown
error variance o”.

Idea: Use the residuals e = y — y as proxies for the true errors.

A conditionally unbiased estimator for o is given by:

9 e'e

T on—(K+1)’
Hence our estimate for Var[3 | X] is

Var[3| X] = s*(X'X) "
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Conditional Unbiasedness of s>

Recall the model:
y=XB+¢e,  E[|X]=0, Varle | X] = ¢°l,.
OLS residuals are
e=y—XB=(In—XXX)"'X)y = My.

Sincey = X8 + ¢,

e=MXB+¢c) =MXB + Me = Mg,
because MX = 0.
The total squared residuals measure remaining variation:

e'e = (Me) (Me) = &'M'Me = £'ME,
since M'M = M.

To estimate the unknown variance o = E[¢7], we average the squared
residuals over the n — (K + 1) independent directions left after fitting K + 1
parameters:
> e'e _ e'Me

T n—(K+1) n—(K+1)

S
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Proving Conditional Unbiasedness of s?

We use two key trace facts for any scalar a’Ba:
a'Ba = tr(a’Ba) = tr(Baa’),

where ais (n x 1) and Bis (n x n). The rule tr(AB) = tr(BA) allows
cyclic permutation inside the trace.)

Compute the conditional expectation of the residual sum of squares:
Ele’e | X] = E[e'Me | X] = tr(ME[ee’ | X]).
Here:
» cis (n x 1): The vector of disturbances,

» Mis (n x n): The residual-maker matrix

» So ¢’Me is a scalar
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Proving Conditional Unbiasedness of s?

By Assumption A4 (spherical errors):
Elee’ | X] = o2lp,

so the conditional covariance of ¢ is proportional to the identity.
Substitute and use tr(M) =n — (K+ 1):

Ele'e | X] = t(ME[ee’ | X]) = o tr(M) = o?[n — (K + 1)].
Therefore,

E[s? | X] = mE[e’e 1X] = o2,

Conclusion: E[s? | X] = 02 = s? is conditionally unbiased.
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Normality Assumption and Basic Inference

We now make use of Assumption A6:

e X ~ N(0, 6°ly).

Theorem (see Greene, Thm. B-103)
If z ~ N(u,X) then

Az+d ~ N(Ap+d, AXA").

We apply this theorem to
B=pB+(XX)'Xe.
With A = (X'X) ' X’ and conditional on X, it follows that
BIX ~ N (B, *(XX)7).

And for each element of j3:
Be| X ~ N (B a*[(XX)],) -
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4.2.2 Testing




Testing a Hypothesis about a Coefficient

We want to test
Ho : Bk = Bx,o-

Under the normality assumption we can make use of the following test
statistic:

Bk — Bro '
v/ o2 (X’X),g(1

Conditionally on X, this statistic is standard normal:

Zx =

Zk|X ~ N(O,l).

Problem: We do not observe 0. What is the distribution of the test statistic if
we replace ¢* by s%?
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Distribution of s? and Independence

Theorem (see Greene, Thm. B.8)

If z ~ N(0,/) and A is idempotent, then z'Az has a chi-squared distribution
with degrees of freedom equal to the rank of A.

We apply this theorem to

g

[

o2 o2

(n—(K+1)s* _ee _ (E)’M(E),

which conditionally on X is

(0~ (K+1)).

Theorem (see Greene, Thm. 4.4)

If ¢ is normally distributed, then the least squares estimator 3 is statistically
independent of the residual vector e and therefore of all functions of e,
including s>.
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Independence of Numerator and Denominator

The statistic: .
Bk — Br,o

S2(X'X)

follows a t—distribution. We need two ingredients to show this:

te =

1. the numerator and denominator have the right marginal distributions,
and

2. they are independent.

We already know that

(=) (2 (5) ek,

o2 o o
Next: Are . )
Bk — Bk
= and —
o/ (X' X)

independent?
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Independence of Numerator and Denominator: Express in ¢

Start from the linear model

y=XB+e, e~N(0).

Then R
B=XX)""Xy=p8+XX)""Xe,
and
e=My=Ms, M=I1-XXX)""'X.

Hence, the random parts of the t-statistic are:

P=B _xxy s, €e_ (S)ym(2).

o o o2 o o

Both are functions of the same random vector ¢/o, so we test independence
via their covariance.
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Independence of Numerator and Denominator: Covariance Derivation

The denominator s? is a quadratic formin e:

2 1

_ /
_7n—(K—|—1)€M€'

S

The numerator (3 — $) is a linear form in &
B—pB=XX)""Xe.
For multivariate normal ¢, a standard result says:

Lemma (Greene, Thm. B.12)

If A and Be are jointly normal and E[(Ac)(Be)'] = 0, then Ac and (Be)'(Be) are
independent.
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Independence of Numerator and Denominator: Covariance Derivation

Hence we only need to check that the linear components
generating numerator and denominator are uncorrelated:

Cov (ME, p- B) = 0.
o o

= (XXX
O0X)~1X'

B-p

g

Substitute

46/77



Independence of Numerator and Denominator: Evaluation

Using E[< (£)/|X] = I because  ~ N/(0, o21),
g o
£ e\’ / —1 _ ’ —1
E[M; (;) X(X'X) ‘x] — MX(X'X) .
Recall M = | — X(X'X)~ "X, hence
MX=X—-XXX)"'XX=X-X=0.

Therefore,

g

MX(XX)"' =0 = Cov <Mj H) =0.

Implication: The vectors Me /o and (5 — 3) /o are uncorrelated, and under
normality, this means they are independent.

Consequently,

p-5 is independent of ee _ (E)IM (5) )
o o2

g g

Conclusion: The numerator and denominator of the t—statistic are
independent, completing the proof that

te ~ tho(ky1)-
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t-distribution compared to Normal distribution

Critical Value tg 975 as df increases
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Numerical Example: Computing a t—Statistic

Data: .
Manual computation:
11 2.4 A
10 2.7 B1—0  —0.25
- — t=—2_— = =—0.78
X=11 1] Y= |29| SE(f,)  0.3202
1 0 3.1 .
Decision:
OLS Estimates: [t| = 0.78 < to.975,2 = 4.30
Bo —929 = Fail to reject Hyp : 51 = 0.
B =—0.25 95% Confidence Interval for 3;:
se(Bl) = 0.3202 CI95%(61) = Bl + t0_975,2 X Se(Bl)
= —0.25 £4.30 x 0.3202

=—0.25+1.38

= Clgs%(B1) = [—1.63, 1.13].
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Simualtion of Confidence Intervals across Samples

Simulation setup: Monte Carlo lllustration of 95% Confidence Intervals
Each line = one sample's 95% ClI for slope f;; dashed line = true ;

» True model:
Yi = Po+ Bixi + &

> 31 =15, &~ N(0,1)

» n = 30 observations per
sample 71

Contains true value? - FALSE — TRUE

100-

» Draw 100 Samples

Interpretation:

» Each line: 95% ClI for 3, from
one sample 251

Dashed line: true 5,

Blue: interval covers 3, o

Red: interval misses 3; 8

About 95% of Cls contain the
truth: Here exactly 5 miss

vVvyVvYyy
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Testing Multiple Linear Restrictions

Instead of testing a single coefficient, we may want to test
Ho:RB=q

where
» Risanr x K+ 1 restriction matrix of full row rank
> gisanr x 1vector

» r=number of linear restrictions (e.g., r = 2 means testing 2
equations jointly)

Examples:

01 00 0
> Ho:p1= /32—0=>R—[O 0 1 0]"7:[0]
> Hy: 31 =083 = R= 0 1 0 —1],q:[0]

(Assuming 3 = [0, A1, Ba, B3] T where j is the intercept.)
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Testing Multiple Linear Restrictions (contd.)

We want to test r linear restrictions on the regression
coefficients:

Ho:RB =q, Risrx K, qisrx1.

Idea:
» Compare model fit between

1. the unrestricted model (no restrictions), and
2. the restricted model where RS = g holds exactly.

> If H; is true, the restricted model should not fit much worse.
The F-statistic formalizes this comparison.
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Unrestricted Least Squares

The unrestricted OLS estimator solves

min(y — XB)(y—XB) = Bur=XX)"'Xy.
Under the classical linear model

y=XB+e,  ElX]=0, Var(elX)= oI,

we have R
Bur | X ~ N(B, 2(X'X) 7).

Residuals: R
eur =Y — XBur.
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Restricted Least Squares: Setup

Now impose the restrictions R3 = g and solve
min(y = X3)'(y = X) stRi=gq.
Use the Lagrangian:
L(B,N) = (y—XB)'(y = XB) + 2N (RB — q),

where )\ is anr x 1 vector of multipliers.
First-order conditions:

—2X'(y — XB) + 2R'\ = 0,

RG—q=0.
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Solving for the Restricted Estimator (Step 1)

We start from the first-order conditions under linear restrictions:
X'X R [Br
R 0]

» The upper block gives the normal equation with Lagrange
multipliers:

_ | Xy
uE

X'XBr+RA=Xy.
» The lower block encodes the restriction:
RAr = q.

> Substituting X'y = X'Xyg (from the unrestricted OLS
estimator) yields:

R'A = X'X(Bur — Br).
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Solving for the Restricted Estimator (Step 2)

From ) R )
R'X = X'X(Bur — Br),
post-multiply by (X'X)~'R’ and rearrange to isolate \:
A= [RX'X)"'R] ™ (RBur — q).

Substitute this expression back into the first equation to obtain:

Br = Bur — (X'X)'R'IRX'X) 'R~ (RBur — q).

» The correction term projects the unrestricted estimate
onto the subspace that satisfies R5 = q.

» The matrix (X'X)"'R'[R(X'X)'R']~! adjusts jSyr just
enough to enforce the restrictions.
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Distribution of the Numerator

Under Hy : RG = q,

RBur — q = R(Bur — B) ~ N(0, o*R(X'X)'R).
Then the quadratic form

5 (RAur — @) ROCX) ™R (Riun — ) ~ ¢
Interpretation: This measures how far the sample estimates

R{yr are from the hypothesized values g, scaled by their
sampling variance.

58/77



Constructing the F—Statistic

The unbiased estimator of o2 from the unrestricted model is:

2 _ eI  (n—K)s?

S ~ 2
n—K’ o? Xn—K

Since X'M = 0, this x2_, term is independent of (RBUR —q).

Therefore:
F_ [(RAur — aYROXX) 'R~ (RAue — )]
= -
2
_ X,f%f_;o ~ F(r,n—K).

Interpretation: The numerator captures the fit loss from
imposing RS = q; the denominator measures the unexplained
variance. Under Hy, their ratio follows an F distribution.
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Alternative Expression of F-statistic

The F—test can also be written in terms of restricted and
unrestricted regression fits:

(SSRR — SSRUR) /f

F = TSR/ —K)

where
» SSRyr = sum of squared residuals from unrestricted model

» SSRp = sum of squared residuals from model estimated
under Hy

» r =number of restrictions

Intuition: If restrictions are correct, forcing them should not
increase SSR “too much.” If SSRg is much larger than SSRyg, Hy
is rejected.
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Special Cases of the F-test

» r = 1: F—test reduces to the squared t—test
F(1,n—K) = t?*(n—K).
» Joint significance of all slope coefficients:
Ho: B2 =p83="-=pBk=0.
This is the test of “overall significance” of the regression.

Summary:
> t—test: single restriction
» F-test: multiple restrictions
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4.2.2: OLS in Large Samples




Roadmap for 4.2.2

What we cover (sketches, intuition first; proofs optional):
1. Consistency of OLS: fixed X vs. random X.
2. Asymptotic normality of §.
3. White (heteroskedasticity-robust) variance: the “sandwich”.
4. Homo- vs. heteroskedasticity in large n (what changes?).
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Convergence in Probability

Convergence in Probability

A sequence of random variables Z, converges in probability to
Zif

Zv 27 o Ve>0:P(|Z,-2Z>¢) =0 asn— .

Useful Rules for convergence in probability:
If X, P, aand Y P, b, then:

> X, + Yy 2 ath

> XY, 2 ab

> Ifb+#0,then 32 2 2

» If g(-) is continuous at a, then g(X;) LN g(a) (Continuous

Mapping Thm.)
Why important? Lets us manipulate probability limits just like
ordinary limits
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Consistency of an Estimator

Definition: An estimator 6, of parameter ¢ is consistent if

6, 2 0.

Intuition: As sample size grows, 6, gets arbitrarily close to the
true ¢ with high probability.

Key ingredients to show consistency:
» Law of Large Numbers (LLN)

» Exogeneity assumptions:
Errors have mean zero conditional on regressors
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Law of Large Numbers (LLN)

(Weak) Law of Large Numbers
If {Z;}{_, are IID with E[Z;] = n and Var(Z;) < oo, then

_ 1
zn:nzljz, LN
=

Interpretation: The sample average gets arbitrarily close to the
population mean as n grows.

Examples:

» Toss a coin: Z, = share of heads Poos.
> Regression context:

p
% ZX,'E,‘ — E[X,'E,'] =0.

65/77



Consistency of OLS (Sketch of a proof)

Recall A
B = (X’X)‘IX’y =B+ (X’X)‘lx/s.

Rewrite:

B-p= (%x’x)_1 (%x'g).

> By LLN: 1X'x 2 Q (positive definite).
> By LLN: 1X'e =1 Zx,-si 2ooif E[xjei] = 0 (exogeneity).

Therefore,
BEB+Q 0=
Conclusion: b is a consistent estimator of /.
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CLT and Convergence in Distribution

Convergence in distribution: Z, 9, 7 means that the
distribution of Z, approaches that of Zas n — oc.

Central Limit Theorem (CLT): If {Z;} are IID with E[Z;] = 0,
Var(Z;) = 0 < oo, then

Implication for regression: Sums of random vectors like
1 .
NG >~ xiej become approximately normal for large n.
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Ingredients for Asymptotic Normality

To study the large-sample behavior of /3, we decompose
n
\f(ﬂ B) = ( ZX:X;) (ﬁ ZXiEi)-
i=1

We need two ingredients for this expression to have a limiting distribution:
1. Regressor matrix (LLN):

1 o /
EZX;X{ 2, Q= Exx]), Q0.
i=1
2. Score term (CLT)'

7 Zx,s, S N(O0,%),  with X = E[g7xx]].
i=1

Here ¥ = Var(x;e;) is the variance of the score term.

Moment and exogeneity conditions:
> Elgi | xi] = 0 (exogeneity)
> E[Ix*] < oo, E[e’lxi]|] < oo
These ensure the LLN and CLT apply.
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A Quick Reminder: Slutsky’s Theorem

Goal: Combine convergence in probability and convergence in distribution.

If
X, & X and Y, 2o,
then y .
YoXp = cX and X,+Y,— X-+c.
Intuition:

» Random parts (X,) have limiting distributions.
» Deterministic parts (Y,) “settle down” to constants.

»> Together: stable + random = same limit shape, scaled by the constant.

Here:
(%Zx,-x,‘)il (%ﬁ Zx,e,-) 9 N(0,Q7'xQ 7).

Lq-1 2N (©0,5)

(Covariance transforms as CXC’ when a normal vector Z~ N (0, ) is multiplied by a
matrix C; here C = Q~ !, hence Q~'2Q~ 1)
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Why A6 (Normality) is No Longer Needed

Recall A6: u|X ~ N(0,0%l,) implied exact finite-sample
normality of 3.

Asymptotics replace A6:
> ByLLN: 1> xx 5 Q.

d
> By CLT: > xigi S N(0,3).
> Slutsky’s theorem = (8 — 8) & N(0,Q7'2Q ).
Key takeaway: Even without normal errors, OLS is

asymptotically normal. Exact inference (t, F) requires A6, but
robust asymptotic inference does not.
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Heteroskedasticity-Robust Variance (White)

Goal:

Do away with homoskedasticity assumption:
Estimate AVAR(3) = 1 Q~'£Q ! without assuming
homoskedasticity.

White (HCO) estimator

Varrob( ( Z XiX; ) X'X)

Variants (finite-sample tweaks): HC1, HC2, HC3.

Sandwich picture:
bread (X'X)~" - toppings > _ xixje - bread (X'X) !
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What's in the Sandwich?

Bread: (X'X) ! comes from the usual OLS normal equations

> xixje?
i

Toppings (the filling):

> Each observation i contributes x;x/e/.

> e? plays the role of an observation-specific variance.

> x;x; spreads that variance across all covariates according
to their values.

Takeaway:
The bread pieces come from the model structure; the filling

captures how noisy each observation actually is.
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Heteroskedasticity-Robust Variance (White)

Practical note

In applied work, it is common to report robust
(heteroskedasticity-consistent) standard errors by default, since the
homoskedasticity assumption rarely holds. Variants (HC1-HC3)
mainly differ in small-sample adjustments, but all are asymptotically
valid.

Extensions for dependent or structured errors:

» Cluster-robust: allows arbitrary correlation within clusters (e.qg.
firms, regions, individuals), but assumes independence across
clusters.

» HAC / Newey—West: heteroskedasticity- and
autocorrelation-consistent, for time series with serial correlation.

> Spatial-robust: allows correlation decaying with distance (e.g.
Conley standard errors).

> Panel-robust: combinations of clustering across two
dimensions (e.g. firm and time).
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How the Other Sandwiches Look Like

Same recipe, different fillings:
All robust estimators share the general sandwich form

Var(8) = XX) ™ (X xQyx) (X007
i

where Q encodes the assumed error covariance structure.

Estimator Toppings (middle term)
White (HC) Q= 0ifi #j; Oy = e?
Cluster-robust Q2 = blockdiagy (X,ege}Xg)

HAC / Newey—West ﬁ,-, decays with |i — j| (serial correlation)
Spatial-robust (Conley) ﬁij decays with distance dj;
Two-way cluster Sum of two clustering dimensions minus overlap
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Asymptotic t for single coefficients

~ — ~

Null: Hp : Bk = Bk,o- Robust s.e.: Serop(Bk) = \/ Varrop () k-
fob — Oe=Pro g, N(0,1).
S/érob(ﬁk)

Interpretation:
Use standard normal critical values asymptotically; in practice,
software often reports t with df n — K but based on robust s.e.
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Homo- vs. Heteroskedasticity (large n)

Homoskedasticity Heteroskedasticity
Consistency of 3 Yes Yes
Asymptotic Var(3) o2Q? Q '=qQ7!
SE to use classical (X'X)™'s® robust (White/HC)

t/F classical valid robust t, Wald/F
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