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3.1.1: The Conditional Expectation Function



The Conditional Expectation Function

Definition: The conditional expectation function for a
dependent variable Yi, given a K+ 1× 1 vector of covariates Xi,
describes the average value of Yi in the population when we
hold Xi fixed.

Written as E[Yi | Xi], the CEF is a function of Xi.

Examples:
▶ E[Incomei | Educationi]

▶ E[Birth weighti | Air qualityi]

We will generally assume Xi is a random variable, which implies that E[Yi | Xi]
is also a random variable.
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The Conditional Expectation Function (contd.)

Formally, for continuous Yi with conditional density fY(t | Xi = x),

E[Yi | Xi = x] =

∫
t fY(t | Xi = x) dt.

For discrete Yi with conditional probability mass function
P(Yi = t | Xi = x),

E[Yi | Xi = x] =
∑
t

tP(Yi = t | Xi = x).

Notice: We are focusing on the population. The goal is to build
intuition about the parameters that we will eventually estimate.
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The CEF Graphically

The conditional distributions of Yi for Xi ∈ [8, ..., 22]:
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The CEF Graphically (contd.)

The CEF E[Yi | Xi] connects these conditional distributions’ means:
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The CEF Graphically (contd.)

Focusing on E[Yi | Xi]:
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Interlude: Law of Iterated Expectations (LIE)

Definition: For any random variables Y and X,

E[Y] = E
[

E[Y | X]
]
.

Intuition: The overall expectation of Y can be obtained in two
steps:
1. First take the conditional expectation of Y given X.
2. Then average this conditional expectation over the

distribution of X.

Example: Average income can be computed as

E[Income] = E[E[Income | Education] ] .
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CEF Decomposition

The Law of Iterated Expectations (LIE) tells us that any random
variable Yi can be written as two components:

Yi = E[Yi | Xi] + εi

Interpretation:
1. The conditional expectation function (CEF) captures the

systematic part of Yi explained by Xi.
2. A residual εi, which has special properties:

2.1 E[εi | Xi] = 0 (zero mean given Xi),
2.2 εi is uncorrelated with any function of Xi.

Takeaway: The CEF provides the predictable part of Yi, while the
residual is the unpredictable variation.
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Proof of Mean Indepence

To show:

E[εi | Xi] = 0 for Yi = E[Yi | Xi] + εi

Proof:

E[εi | Xi] =

E
[
Yi − E[Yi | Xi]

∣∣Xi
]
=

E[Yi | Xi] − E
[

E[Yi | Xi]
∣∣Xi

]
=

E[Yi | Xi]− E[Yi | Xi] = 0
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Proof of Zero Correlation

To show:

E[h(Xi)εi] = 0 for any measurable h where Yi = E[Yi | Xi] + εi

Proof:

E[h(Xi)εi] = E
[

E
[
h(Xi)εi | Xi

] ]
= E

[
h(Xi) E[εi | Xi]

]
= E

[
h(Xi)× 0

]
= 0 .
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The Prediction Property of the CEF

Claim: The conditional expectation function E[Yi | Xi] is the
best predictor of Yi given Xi, in the sense of minimizing mean
squared error (MSE).

Formally: For any measurable function g(Xi),

E
[
(Yi − E[Yi | Xi])

2
]
≤ E

[
(Yi − g(Xi))

2
]
.

Intuition:
▶ The CEF captures all predictable variation in Yi from Xi.
▶ Any other predictor g(Xi) can only add noise.
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Proof of the Prediction Property

For any g(Xi), decompose:

E
[
(Yi − g(Xi))

2
]
= E

[
(Yi − E[Yi | Xi] + E[Yi | Xi]− g(Xi))

2
]

= E
[
(Yi − E[Yi | Xi])

2
]

+ E
[
(E[Yi | Xi]− g(Xi))

2
]

+ 2 E
[
(Yi − E[Yi | Xi])(E[Yi | Xi]− g(Xi))

]
.

Key: The cross term vanishes since

E
[
Yi − E[Yi | Xi]

∣∣Xi
]
= 0.

Thus:

E
[
(Yi−g(Xi))

2
]
= E

[
(Yi−E[Yi | Xi])

2
]
+E

[
(E[Yi | Xi]−g(Xi))

2
]

≥ E
[
(Yi−E[Yi | Xi])

2
]
.
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3.1.2: The Population Regression Line



From the CEF to Linear Regression

Recall: The conditional expectation function (CEF) is

E[Yi | Xi].

It fully describes the systematic relationship between Yi and Xi.

Problem:
▶ The true population CEF may be unknown.
▶ We often need a tractable approximation for estimation

and inference.

Solution: Approximate the CEF with a linear function of Xi:

E[Yi | Xi] ≈ X′
iβ.
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The Population Regression Line

Definition: The population regression line is the best linear
approximation to the CEF:

X′
iβ = arg min

g∈Glinear
E
[
(Yi − g(Xi))

2
]
,

where Glinear is the set of linear functions of Xi.

Characterization:
▶ β are the population OLS coefficients.
▶ The residual ui = Yi − X′

iβ satisfies

E[Xiui] = 0 (orthogonality condition).

Takeaway: The population regression line gives the linear
predictor of Yi that comes closest to the (possibly nonlinear)
CEF in mean squared error.
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The Population Regression Line

The Population Regression Line as linear approximation of the
CEF:
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From Population to Sample Regression

Population regression:

β = arg min
b

E
[
(Yi − X′

ib)
2
]
.

Problem: The expectation E[·] is unknown.

Idea: Replace expectations with sample averages.

β̂ = arg min
b

1

n

n∑
i=1

(Yi − X′
ib)

2.

This is the principle of OLS: Estimate the coefficients that

minimize the average squared residuals in the sample.
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Population vs. Sample Graphically

Population Population Regression Line
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Population vs. Sample Graphically

Sample 1 Sample Regression Line 1
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Population vs. Sample Graphically

Sample 2 Sample Regression Line 2
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Population vs. Sample Graphically

Sample 3 Sample Regression Line 3
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Drawing 10,000 samples

Distribution of Slopes
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3.2: The Linear Regression Model



The Linear Regression Model
Model setup:

yi = β0+xi1β1+· · ·+xiKβK+ui or in compact form: yi = x′
iβ+ui.

Notation:
▶ i = 1, . . . , n observations
▶ xi = (1, xi1, . . . , xiK)′ is a (K+ 1)× 1 regressor vector
▶ β = (β0, β1, . . . , βK)

′ is a (K+ 1)× 1 parameter vector
▶ ui is the regression error

Matrix form:
y = Xβ + u,

where

y =

y1
...
yn

 , X =


1 x11 x12 . . . x1K
1 x21 x22 . . . x2K
...

...
...

. . .
...

1 xn1 xn2 . . . xnK

 , β =


β0

β1

β2

...
βK

 , u =


u1
u2
...
un

 .
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3.2.1: Classical Linear Regression Assumptions



Assumptions on the Data Generating Process
The Classical Linear Regression Model Assumptions:
A1: Linearity The regression model is linear in parameters:

yi = β0 + xi1β1 + · · ·+ xiKβK + εi.
A2: Identifiability X has full column rank (K+1), so that (X′X)−1

exists.
A3: (Strict) Exogeneity E[ui | xi] = 0.
A4: Homoskedasticity (and Nonautocorrelation)

Var(εi | xi) = σ2 < ∞ ∀i.
A5: Data Generating Process The regressor matrix X may be

fixed (conditional analysis) or random (stochastic
regressors).

A6: Normality (for inference)
ε | X ∼ N (0, σ2In).
This implies that the εi are independent and identically
distributed.

Note: A6 is only needed for exact small-sample inference. We will later relax
this assumption and rely on asymptotics instead.
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Data Generating Process: Linearity

A1: Linearity

yi = β0 + β1xi1 + . . .+ βKxiK + εi and E(εi) = 0.

A1 assumes that the
▶ functional relationship is linear in parameters βk
▶ error term εi enters additively
▶ parameters βk are constant across observations i
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Anscombe’s Quartet
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All four sets are identical when examined using linear statistics, but very
different when graphed. Correlation between x and y is 0.816. Linear
regression y = 3.00 + 0.50x.
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Data Generating Process: Identifiability

A2: Identifiability (Full Rank)

rank(X) = K+1 ⇐⇒ (X′X)−1 exists

(xi0, xi1, . . . , xiK) are not linearly dependent

A2 implies (see Greene, A–46): rank(X′X) = rank(X) = K+1.

Interpretation / practice:
▶ No perfect multicollinearity: no column of X (including the constant) is

an exact linear combination of the others.
▶ Regressors (except the constant) must have nonzero variation:

0 < Var(xik).
▶ Watch out for the dummy variable trap: intercept + full set of category

dummies ⇒ drop one category.
▶ Avoid exact linear transforms (e.g. include either x and x− x̄, not both;

or avoid x, 2x together).
Every explanatory variable should add independent information to the model.
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The Identifying Variation from xik

Using which dataset would you get a more accurate regression line?

Low X Variance No X Variance
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Data Generating Process: (Strict) Exogeneity

A3: (Strict) Exogeneity

E[εi | X] =

E[ε1 | X]
...

E[εn | X]

 = 0 ⇐⇒ E[εi | xi] = 0 ∀i

Implications:

E[εi] = 0, Cov(εi, xik) = 0 ∀k, E[X′εi] = 0 (orthogonality).
How this connects to the CEF (earlier in 3.1):
▶ From the CEF decomposition Yi = E[Yi | Xi] + εi we proved

E[εi | Xi] = 0 and E[h(Xi)εi] = 0. This is exactly the content of A3
for the regression error.

▶ In the linear projection (population regression function),
εi = Yi − x′

iβ are residuals orthogonal to regressors: E[X′εi] = 0.
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Implication of Linearity and Exogeneity

Key result: Combining A1 (Linearity) and A3 (Exogeneity)
implies

E[y | X] = Xβ.

Why?
▶ A1: The regression model is linear in parameters:

y = Xβ + εi.
▶ A3: Exogeneity ensures E[εi | X] = 0.

Interpretation:
▶ The systematic part of y given X is exactly Xβ.
▶ The regression line coincides with the conditional

expectation function under these assumptions.
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Exogeneity as key assumption for causal claims

Last Slide:
The systematic part of y given X is exactly Xβ.

Causal interpretation: If A3 holds, a one-unit increase in xik shifts
E[yi | X] by βk (ceteris paribus). Without A3, β̂ is generally biased for
causal effects.

But: A3 is not testable; justify it with design, institutional detail, and
diagnostics.

When A3 fails (why causal designs are necessary)

▶ Simultaneity / reverse causality (y ↔ x)

▶ Omitted unobservables (z affects both x and y)

▶ Measurement error in x (classical or nonclassical)
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How to argue A3 (make x plausibly exogenous)

▶ Randomization / encouragement (lotteries, nudges)
▶ Instrumental variables (IV): relevance (cov(z, x) ̸= 0) &

exclusion (z ⊥ u)
▶ Difference-in-Differences: parallel trends ⇒ timing

exogenous
▶ Regression Discontinuity: local randomization at cutoff
▶ Panel / FE: difference out time-invariant unobservables
▶ Careful controls / DAG logic: block backdoor paths; avoid

bad controls
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Data Generating Process: Homoskedasticity

A4: Homoskedasticity (and No Autocorrelation)

Var[ε | X] = E[εε′ | X] =


E[ε21 | X] E[ε1ε2 | X] · · · E[ε1εn | X]

E[ε2ε1 | X] E[ε22 | X] · · · E[ε2εn | X]
...

...
. . .

...
E[εnε1 | X] E[εnε2 | X] · · · E[ε2n | X]



=


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σ2

 = σ2In

Implication:

Var[ε] = E[Var(ε | X)] + Var(E[ε | X]) = σ2In
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Homoskedasticity (graphically)

Which line fits our homoskedasticity assumption?
Constant Error Variance Error Variance grows with x
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Off-Diagonal Structure of Error Covariance
No Autocorrelation AR(1) Autocorrelation Cluster Correlation
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Axes are observation indices: rows = i, columns = j

▶ No Autocorrelation: Errors are independent ⇒ only
diagonal entries (variances), off-diagonals are zero.

▶ AR(1) Autocorrelation: Nearby errors move together ⇒
strong correlation close to the diagonal, fading with
distance.

▶ Cluster Correlation: Errors within groups are correlated ⇒
block structures along the diagonal.
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Data Generating Process: Regressors

A5: Properties of the Regressors

▶ The regressor matrix X may be treated as
1. Nonstochastic (fixed in repeated samples) – classical

textbook case.
2. Stochastic (random) – more realistic in practice.

▶ In either case, X must be independent of the error process
(exogeneity assumption already ensures this).

▶ Requires that regressors are observed without error.

Interpretation: Whether we treat X as fixed or random does not
affect consistency of OLS, but it matters for how we formalize
expectations and variances.
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Fixed vs. Random Regressors: Why It Matters

⇒ Fixed X: Treat X as nonrandom. All uncertainty in β̂ comes
from the random errors ε.

E[β̂ |X] = β, var(β̂ |X) = σ2(X′X)−1

⇒ Random X: Both X and ε are random, but E[ε|X] = 0 still
ensures unbiasedness. Expectations are now taken over
the joint distribution of (X, ε):

E[β̂] = β, var(β̂) = E
[
σ2(X′X)−1

]
▶ In large samples, the difference fades:

β̂
p−→ β

as long as E[ε|X] = 0 and X has full column rank.
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Data Generating Process: Normality

A6: Normality (for inference)

ε | X ∼ N (0, σ2In)

which implies that the errors are
▶ independent,
▶ identically distributed,
▶ Gaussian with mean zero and variance σ2.

Implications:
▶ The εi are not only uncorrelated but also independent.
▶ OLS estimators β̂ are normally distributed in finite samples.
▶ Enables exact t- and F-tests in small samples.
▶ Not required for consistency or asymptotic normality of

OLS.
In practice, this assumption is often unrealistic; we will later rely on
asymptotic approximations instead. 37 / 54



3.2.2: The Least Squares Estimator



The Least Squares Estimator
Setup:
▶ Observations: (yi, xi), i = 1, . . . , n
▶ Population regression model:

E[yi | xi] = x′
iβ

▶ Disturbance term:
εi = yi − x′

iβ

Estimation:
▶ OLS estimates β by β̂.
▶ Predicted values and residuals:

ŷi = x′
iβ̂, ei = yi − ŷi.

Estimate approximates Population Regression Line:

yi = x′
iβ + εi ≈ ŷi + ei.

38 / 54



OLS as Minimization Problem

We minimize the sum of squared residuals:

S(β̂) = (y− Xβ̂)′(y− Xβ̂).

Expanding gives:

S(β̂) = y′y− 2y′Xβ̂ + β̂′X′Xβ̂.

Next step: take the derivative of S(β̂) with respect to β̂ to find
the minimum.
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Deriving the OLS Estimator

FOC: Take the derivative and set equal to zero:

∂S(β̂)
∂β̂

= −2X′y+ 2X′Xβ̂ = 0.

This gives the normal equations:

X′Xβ̂ = X′y.

Key point: To solve uniquely, X′X must be invertible (A2).

β̂ = (X′X)−1X′y.
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Why OLS is a Minimum (Second-Order Condition)

Recall the sum of squared residuals:

S(β̂) = y′y− 2y′Xβ̂ + b′X′Xβ̂.

First derivative:
∂S(β̂)
∂β̂

= −2X′y+ 2X′Xβ̂.

Second derivative (Hessian):

∂2S(β̂)
∂β̂∂β̂′

= 2X′X.

Conclusion: If X has full column rank, X′X is positive definite ⇒ S(β̂)
is strictly convex ⇒ the OLS solution β̂ is unique and minimizes S(β̂).
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Key Properties of OLS Residuals

Let ei = yi − ŷi be the residuals.

Two important facts:
▶ Residuals are uncorrelated with every regressor:

n∑
i=1

xikei = 0 for each regressor k.

▶ If a constant is included (which we did!), residuals sum to
zero:

n∑
i=1

ei = 0.

Intuition: The regression line has been chosen so that no
systematic pattern is left in the residuals. What remains is “pure
noise.”
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Projection Interpretation of OLS

OLS can be expressed using projection matrices:

ŷ = Xβ̂ = X(X′X)−1X′y = Py,

where
P = X(X′X)−1X′

is the projection matrix. It projects y onto the part that can be
explained by linear combinations of the regressors in X.

Residuals can be written as

e = y− ŷ = (I− P)y = My,

where
M = I− P

is the residual maker.
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Properties of P and M

Important properties:
▶ P and M are symmetric and idempotent:

P2 = P, M2 = M.

▶ P keeps any linear combination of regressors unchanged:

PX = X.

▶ M removes any linear combination of regressors:

MX = 0.

▶ Fitted values and residuals are orthogonal:

ŷ′e = 0.
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Example for projection matrix

Example
Show PX = X(X′X)−1X′X = X.

X =

1 0
1 1
1 0

 ;X’X =

[
1 1 1
0 1 0

]1 0
1 1
1 0

 =

[
3 1
1 1

]
;X’X−1 =

[
1/2 −1/2
−1/2 1.5

]
;

X(X′X)−1X′ =

1 0
1 1
1 0

[
1/2 −1/2
−1/2 3/2

] [
1 1 1
0 1 0

]
=

1/2 0 1/2
0 1 0

1/2 0 1/2


PX =

1/2 0 1/2
0 1 0

1/2 0 1/2

1 0
1 1
1 0

 =

1 0
1 1
1 0

 . (1)

Project y on the column space of X, i.e. regress y on x and predict E[y] = ŷ.

y =

12
3

 ;Py =

1/2 0 1/2
0 1 0

1/2 0 1/2

12
3

 = ŷ =

22
2

 . (2)
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Example for residual maker matrix

Example
Show MX = (I− X(X′X)−1X′)X = (I− P)X = X− X = 0.

I =

1 0 0
0 1 0
0 0 1

 ;X =

1 0
1 1
1 0

 ;

M = (I− P) =

1 0 0
0 1 0
0 0 1

−

1/2 0 1/2
0 1 0

1/2 0 1/2

 =

 1/2 0 −1/2
0 0 0

−1/2 0 1/2


MX =

 1/2 0 −1/2
0 0 0

−1/2 0 1/2

1 0
1 1
1 0

 =

0 0
0 0
0 0

 . (3)

Obtain residuals from a projection of y on the column space of X, i.e. regress
y on x and predict y− E[y] = y− ŷ.

y =

12
3

 ;My =

 1/2 0 −1/2
0 0 0

−1/2 0 1/2

12
3

 = y− ŷ =

−1
0
1

 . (4)
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Projection

𝑥!

𝑥"

𝑦#

𝑦

𝑒

y = ŷ+ e, ŷ = Py
e = (I− P)y, P = X(X′X)−1X′

Intuition

▶ The shaded plane is the set
of all linear combinations of
the regressors in X (column
space).

▶ ŷ is the point on this plane
that lies closest to the
observed y.

▶ The vector e = y− ŷ is the
vertical “drop” from y to the
plane; ŷ and e are
orthogonal (ŷ′e = 0).

▶ Consequence: along the
direction of the regressors,
there is no systematic
pattern left in the residuals.
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Goodness of Fit and the Decomposition of Variation

y = ŷ+ e = Py+My

y′y︸︷︷︸
Total sum of squares (TSS)

= y′Py︸︷︷︸
Explained

+ y′My︸︷︷︸
Unexplained

= ŷ′ŷ+ e′e

(y′y− nȳ2) = (ŷ′ŷ− nȳ2) + e′e

Total variation in y

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

e2i

Note: ¯̂y = ȳ only if X contains a constant.
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Coefficient of Determination

The share of explained variation is measured by R2:

R2 =
Explained variation

Total variation
= 1− Unexplained variation

Total variation
.

Properties:
▶ 0 ≤ R2 ≤ 1.
▶ R2 = 1: all outcomes are exactly fitted, residuals equal zero.
▶ R2 = 0: model does no better than predicting the sample

mean ȳ.
▶ R2 always increases when additional regressors are

included.
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Adjusted R2

Because R2 never decreases when adding regressors, we often
use the adjusted R2:

R̄2 = 1−
1

n−K
∑n

i=1(yi − ŷi)2
1

n−1

∑n
i=1(yi − ȳ)2

.

Key idea: Adjusted R2 penalizes adding regressors that do not
improve fit.
▶ R̄2 may fall if a new regressor contributes little.
▶ Helps compare models with different numbers of

regressors.
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3.2.3: Weighted Least Squares (WLS)



Weighted Least Squares (WLS)
Motivation: Ordinary Least Squares minimizes

n∑
i=1

(yi − x′
iβ̂)

2,

which gives all observations the same weight.
But in many applications:
▶ Observations have different reliability (e.g., group means

from different sample sizes),
▶ or we wish to reflect a sampling design with

observation-specific probabilities.
Idea: Assign each observation a nonnegative weight wi, and
minimize

SW(b) =
n∑

i=1

wi(yi − x′
iβ̂)

2.

When wi reflects sampling probability or precision, larger
weights make an observation count more in the fit.
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Deriving the WLS Estimator

Write the criterion in matrix form:

SW(β̂) = (y− Xβ̂)′W(y− Xβ̂), W = diag(w1, . . . ,wn).

First-order condition:

∂SW(β̂)

∂β̂
= −2X′Wy+ 2X′WXβ̂ = 0.

Normal equations:
X′WXβ̂WLS = X′Wy.

Solution:
β̂WLS = (X′WX)−1X′Wy.
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Interpretation of WLS

Equivalent transformation: If W1/2 denotes the diagonal matrix of√
wi, then WLS is simply OLS on the transformed model:

W1/2y = W1/2Xβ +W1/2u.

Interpretations:

▶ Observations with large wi are given more influence in fitting the
regression line.

▶ When wi are proportional to the inverse of the sampling variance,
this yields an estimator that reflects the relative precision of
each observation.

▶ When wi correspond to inverse sampling probabilities, the
regression estimates are representative of the population
defined by that design.

Special case: wi = 1 for all i gives OLS.
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When to Use Weighted Least Squares

Common situations:
▶ Survey data with sampling weights.
▶ Grouped data where each observation is an average of

different sample sizes.
▶ Heteroskedasticity with known or estimable variance

pattern σ2
i ∝ 1/wi.

Practical notes:
▶ The choice of weights changes the estimand—WLS

estimates the linear relationship in the weighted
population.

▶ Always check whether weights are due to sampling design
or model assumptions; interpretation differs.
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References and Further Resources

▶ Greene, W. H. (2018). Econometric Analysis. Pearson. Chapters
2–3.

▶ Rubin, E. Introduction to Econometrics (EC421). Lecture
materials and visual intuition for the Conditional Expectation
Function, population vs. sample regression, and Monte Carlo
simulations. github.com/edrubin/EC421W22

Several graphical illustrations in this lecture are inspired by and adapted from
Ed Rubin’s EC421 course materials. Highly recommended as a
complementary resource.
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