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2.1 Random Variables & Probability



Discrete and continuous random variables

▶ A random variable X is
discrete if the set of
outcomes x is either finite
or countably infinite.

▶ The random variable X is
continuous if the set of
outcomes x is infinitely
divisible and, hence, not
countable.
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Discrete probabilities

For values x of a discrete random variable X,
the probability mass function (pmf)

f(x) = Prob(X = x).

The axioms of probability require

0 ≤ Prob(X = x) ≤ 1,∑
x

f(x) = 1.
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Discrete cumulative probabilities
For values x of a discrete random variable X,
the cumulative distribution function

F(x) =
∑
X≤x

f(x) = Prob(X ≤ x),

where
f(xi) = F(xi)− F(xi−1).

Example
Roll of a six-sided die

x f(x) F(X ≤ x)

1 f(1) = 1/6 F(X ≤ 1) = 1/6
2 f(2) = 1/6 F(X ≤ 2) = 2/6
3 f(3) = 1/6 F(X ≤ 3) = 3/6
4 f(4) = 1/6 F(X ≤ 4) = 4/6
5 f(5) = 1/6 F(X ≤ 5) = 5/6
6 f(6) = 1/6 F(X ≤ 6) = 6/6

What’s the probability that you roll a 5 or higher?
F(X ≥ 5) = 1− F(X ≤ 4) = 1− 2/3 = 1/3.
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Continuous probabilities
For values x of a continuous random variable X, the probability
is zero but the area under f(x) ≥ 0 in the range form a to b is
the probability density function (pdf)

Prob(a ≤ x ≤ b) = Prob(a < x < b) =
∫ b

a
f(x)dx ≥ 0.

The axioms of probability require∫ +∞

−∞
f(x)dx = 1.

f(x) = 0 outside the range of x.
The cumulative distribution function (cdf) is

F(x) =
∫ x

−∞
f(t)dt,

f(x) =
dF(x)
dx

.
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Cumulative distribution function

For continuous and discrete variables, F(x) satisfies

Properties of cdf
.

▶ 0 ≤ F(x) ≤ 1

▶ If x > y, then F(x) ≥ F(y)

▶ F(+∞) = 1

▶ F(−∞) = 0

and
Prob(a < x ≤ b) = F(b)− F(a).

6 / 109



Symmetric distributions
For symmetric distributions

f(µ− x) = f(µ+ x)
and

F(µ+ x) = 1− lim
ϵ→0

F(−(µ+ x+ ϵ)).

With µ = 0
f(−x) = f(x)

and
F(x) = 1− F(−x) + Pr(−x).

In the continuous case
F(x) = 1− F(−x).
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2.2 Expectations, Variance & Inequalities



Mean of a random variable
The mean, or expected value, of a discrete random variable is

µ = E[x] =
∑
x

xf(x) (1)

Example
Roll of a six-sided die

x f(x) = 1/n F(X ≤ x) = (x− a+ 1)/n

a = 1 f(1) = 1/6 F(X ≤ 1) = 1/6
2 f(2) = 1/6 F(X ≤ 2) = 2/6
3 f(3) = 1/6 F(X ≤ 3) = 3/6
4 f(4) = 1/6 F(X ≤ 4) = 4/6
5 f(5) = 1/6 F(X ≤ 5) = 5/6
b = 6 f(6) = 1/6 F(X ≤ 6) = 6/6

What’s the expected value from rolling the dice?
E[x] = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = 3.5.
This is the mean (and the median) of a uniform distribution
(n+ 1)/2 = (a+ b)/2 = 3.5.

8 / 109



Variance of a random variable
The variance of a random variable σ2 > 0 is

σ2 = Var[x] = E[(x− µ)2] =


∑
x
(x− µ)2f(x) if x is discrete,

∫
x
(x− µ)2f(x)dx if x is continuous.

(2)

Example
Roll of a six-sided die. What’s the variance V[x] from rolling the dice?
The probability of observing x, Pr(X = x) = 1/n, is discretely uniformly distributed

E[x] =
n+ 1

2
; (E[x])2 =

(n+ 1)2

4
.

E[x2] =
∑
x

Pr(X = x) =
1

n

n∑
x=1

x2 =
(n+ 1)(2n+ 1)

6
due to the seq. sum of squares.

V[x] = E[x2]− (E[x])2.

V[x] =
(n+ 1)(2n+ 1)

6
−

(n+ 1)2

4
=

n2 − 1

12
= (62 − 1)/12 ≈ 2.92.
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Chebychev inequality
For any random variable x and any positive constant k,

P(µ− kσ ≤ x ≤ µ+ kσ) ≥
1

k2
.

Share outside k standard deviations.
If x is normally distributed, the bound is 1− (2Φ(k)− 1).

95% of the observations are within 1.96 standard deviations for normally
distributed x. If x is not normal, 95% are at most within 4.47 standard
deviations.
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Normal coverage
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Central moments of a random variable

The central moments are

µr = E[(x− µ)r].

Example
Moments. Two measures often used to describe a probability
distribution are

▶ expectation = E[(x− µ)1]

▶ variance = E[(x− µ)2]

▶ skewness = E[(x− µ)3]

▶ kurtosis = E[(x− µ)4]

The skewness is zero for symmetric distributions.
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Higher order moments
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2.3 Moment Generating Functions



Moment generating function
For the random variable X, with probability density function f(x), if the
function

M(t) = E[etx].

exists, then it is the moment generating function(MGF). t is the
integration variable of a Laplace-Stieltjes transformation
M(t) = L(−t).
▶ Often simpler alternative to working directly with probability

density functions or cumulative distribution functions
▶ Not all random variables have moment-generating functions

The nth moment is the nth derivative of the moment-generating
function, evaluated at t = 0.

Example
The MGF for the standard normal distribution with µ = 0, σ = 1 is

Mz(t) = eµt+σ2t2/2 = et2/2.

If x and y are independent, then the MGF of x+ y is Mx(t)My(t).
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Moment generating function
For x ∼ N(µ, σ2) for some µ, σ > 0 with moment generating function

Mx
′(t) = exp(µt+ 1

2
σ2t2), the first moment generating function of x is

E[(x− µ)1] = Mx
′(t) = (µ+ σ2t) exp

(
µt+

1

2
σ2t2

)
.

Example

E[(x− µ)1] = Mx
′(t) =

d
[

exp
(
µt+

1

2
σ2t2

)]
dt

=

d
[
µt+

1

2
σ2t2

]
dt

d
[

exp
(
µt+

1

2
σ2t2

)]
d(µt+

1

2
σ2t2)

= (µ+ σ2t) exp
(
µt+

1

2
σ2t2

)
.
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Moment generating function
If x ∼ N(0, 1),
▶ the skewness is E[(x− µ)3] = 0 and
▶ the kurtosis is E[(x− µ)4] = 3.

Example

E[(x−µ)1] = Mx
′(t) = (µ+σ2t) exp

(
µt+

1

2
σ2t2

)
with µ = 0, σ = 1, t = 0 : E[x] = µ = 0

E[(x− µ)2] = Mx
′′(t) =

(
σ2 + (µ+ σ2t)2

)
exp

(
µt+

1

2
σ2t2

)
with µ = 0, σ = 1, t = 0 : E[(x− µ)2] = σ2 = 1

E[(x− µ)3] = Mx
′′′(t) =

(
3σ2(µ+ σ2t) + (µ+ σ2t)3

)
exp

(
µt+

1

2
σ2t2

)
with µ = 0, σ = 1, t = 0 : E[(x− µ)3] = 0

E[(x− µ)4] = Mx
(4)(t) =

(
3σ4 + 6σ2(µ+ σ2t)2 + (µ+ σ2t)4

)
exp

(
µt+

1

2
σ2t2

)
with µ = 0, σ = 1, t = 0 : E[(x− µ)4] = 3.
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2.4 Approximations & Jensen



Approximating mean and variance

For any two functions g1(x) and g2(x),

E[g1(x) + g2(x)] = E[g1(x)] + E[g2(x)]. (3)

For the general case of a possibly nonlinear g(x),

E[g(x)] =
∫
x
g(x)f(x)dx, (4)

and
Var[g(x)] =

∫
x
(g(x)− E[g(x)])2 f(x)dx. (5)

E[g(x)] and Var[g(x)] can be approximated by a first order linear
Taylor series:

g(x) ≈ [g(x0)− g′(x0)x0] + g′(x0)x. (6)
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Taylor approximation Order 1
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Taylor approximation Order 1
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Taylor approximation Order 2
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Taylor approximation Order 3
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Taylor approximation Order 4
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Taylor approximation Order 5
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Taylor approximation Order 6
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Taylor approximation Order 7
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Taylor approximation Order 8
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Taylor approximation Order 9
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Taylor approximation Order 10
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Taylor approximation Order 15
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Taylor approximation Order 20
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Taylor approximation Order 45
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Taylor approximation Order 100
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Approximating mean and variance
A natural choice for the expansion point is x0 = µ = E(x).
Inserting this value in Eq. (6) gives

g(x) ≈ [g(µ)− g′(µ)µ] + g′(µ)x, (7)

so that
E[g(x)] ≈ g(µ), (8)

and
Var[g(x)] ≈ [g′(µ)]2Var[x]. (9)

Example
Isoelastic utility. cbad = 10.00 Euro; cgood = 100.00 Euro; probability good outcome
50%

µ = E[c] = 1/2× cbad + 1/2× cgood =55.00 Euro

u(c) = c1/2

u(µ) = 7.42 approximates E[u(c)] = 1/2× 101/2 + 1/2× 1001/2 = 6.58
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Approximating mean and variance

Example
Isoelastic utility. cbad = 10.00 Euro; cgood = 100.00 Euro; probability good
outcome 50%; µ = 55.00 Euro

u(c) = ln(c)
u(µ) = 4.01 approx.
E[u(c)] = 1/2×ln(10)+1/2×ln(100) = 3.45

Jensen’s
inequality: E[g(x)] ≤ g(E[x])] if g′′(x) < 0.

V[u(c)] ≈ (1/55)2((10− 55)2 + (100− 55)2) = 1.34
V[u(c)] = (ln(10)− E[u(c)])2 + (ln(100)− E[u(c)])2 = 2.65
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Useful rules

▶ Var[x] = E[x2]− µ2

▶ E[x2] = σ2 + µ2

▶ If a and b constants, Var[a+ bx] = b2Var[x]

▶ Var[a] = 0

▶ If g(x) = a+ bx and a and b are constants,

E[a+ bx] = a+ bE[x]

▶ Coverage P(|X− µ| ≥ kσ) ≤ 1

k2
▶ Skewness = E[(x− µ)3]

▶ Kurtosis = E[(x− µ)4]

▶ For symmetric distributions f(µ− x) = f(µ+ x);

1− F(x) = F(−x)

▶ E[g(x)] ≈ g(µ)

▶ Var[g(x)] ≈ [g′(µ)]2Var[x]
35 / 109



2.5 Core Distributions



Specific Distributions
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Discrete distributions

The Bernoulli distribution for a single binomial outcome (trial)
is

Prob(x = 1) = p,
Prob(x = 0) = 1− p,

where 0 ≤ p ≤ 1 is the probability of success.
▶ E[x] = p and
▶ E[x2] = p× 12 + (1− p)× 02 = p
▶ V[x] = E[x2]− E[x]2 = p− p2 = p(1− p).
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Discrete distributions
The distribution for x successes in n trials is the
binomial distribution,

Prob(X = x) =
n!

(n− x)!x!
px(1− p)n−x x = 0, 1, . . . , n.

The mean and variance of x are
▶ E[x] = np and
▶ V[x] = np(1− p).

Example of a binomial [n = 15, p = 0.5] distribution:
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Discrete distributions
The limiting form of the binomial distribution, n → ∞, is the
Poisson distribution,

Prob(X = x) =
eλλx

x!
.

The mean and variance of x are
▶ E[x] = λ and
▶ V[x] = λ.

Example of a Poisson [3] distribution:
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The normal distribution
Random variable x ∼ N[µ, σ2] is distributed according to the
normal distribution with mean µ and standard deviation σ
obtained as

f(x|µ, σ) = 1

σ
√
2π

e−
1
2
( x−µ

σ
)2 . (10)

The density is denoted ϕ(x) and the cumulative distribution
function is denoted Φ(x) for the standard normal. Example of a
standard normal, (x ∼ N[0, 1]), and a normal with mean 0.5 and
standard deviation 1.3:
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Transformation of random variables

Continuous variable x may be transformed to a discrete variable
y. Calculate the mean of variable x in the respective interval:

Prob(Y = µ1) = P(−∞ < X ≤ a),
Prob(Y = µ2) = P(a < X ≤ b),
Prob(Y = µ3) = P(b < X ≤ ∞).
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Method of transformations
If x is a continuous random variable with pdf fx(x) and if y = g(x) is a continuous
monotonic function of x, then the density of y is obtained by

Prob(y ≤ b) =
∫ b

−∞
fx(g−1(y))|g−1′(y)|dy.

With fy(y) = fx(g−1(y))|g−1′](y)|dy, this equation can be written as

Prob(y ≤ b) =
∫ b

−∞
fy(y)dy.

Example
If x ∼ N[µ, σ2], then the distribution of y = g(x) =

x− µ

σ
is found as follows:

g−1(y) = x = σy+ µ

g−1′(y) =
dx
dy

= σ

Therefore with fx(x) =
1

σ
√
2π

e−
1
2
[(g−1(y)−µ)2/σ2]|g−1′(y)|

fy(y) =
1

√
2πσ

e−[(σy+µ)−µ]2/2σ2
|σ| =

1
√
2π

e−y2/2. 42 / 109



Properties of the normal distribution

▶ Preservation under linear transformation:

If x ∼ N[µ, σ2], then (a+ bx) ∼ N[a+ bµ, b2σ2].

▶ Convenient transformation a = −µ/σ and b = 1/σ:

The resulting variable z =
(x− µ)

σ
has the standard normal

distribution with density

ϕ(z) =
1√
2π

e−
z2
2 .

▶ If x ∼ N[µ, σ2], then f(x) =
1

σ
ϕ[

x− µ

σ
]

▶ Prob(a ≤ x ≤ b) = Prob
(
a− µ

σ
≤ x− µ

σ
≤ b− µ

σ

)
▶ ϕ(−z) = ϕ(z) and Φ(−x) = 1− Φ(x) because of symmetry

43 / 109



Method of transformations

If z ∼ N[0, 1], then z2 ∼ χ2[1] with pdf
1

√
2πy

e−y/2.

Example

fx(x) =
1

√
2π

e−
x2
2

y = g(x) = x2

g−1(y) = x = ±
√
y there are two solutions to g1, g2.

g−1′(y) =
dx
dy

= ±1/2y−1/2

fy(y) = fx(g−1
1 (y))|g−1′

1 (y)|+ fx(g−1
2 (y))|g−1′

2 (y)|

fy(y) = fx(
√
y)|1/2y−1/2|+ fx(−

√
y)| − 1/2y−1/2|

fy(y) =
1

2
√
2πy

e−
y
2 +

1

2
√
2πy

e−
y
2 =

1
√
2πy

e−
y
2
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Distributions derived from the normal
▶ If z ∼ N[0, 1], then z2 ∼ χ2[1] with E[z2] = 1 and V[z2] = 2.
▶ If x1, ..., xn are n independent χ2[1] variables, then

n∑
i=1

xi ∼ χ2[n].

▶ If zi, i = 1, ..., n, are independent N[0, 1] variables, then

n∑
i=1

z2i ∼ χ2[n].

▶ If zi, i = 1, ..., n, are independent N[0, σ2] variables, then

n∑
i=1

(
zi
σ

)2

∼ χ2[n].

▶ If x1 and x2 are independent χ2 variables with n1 and n2 degrees of
freedom, then

x1 + x2 ∼ χ2[n1 + n2].
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The χ2 distribution
Random variable x ∼ χ2[n] is distributed according to the
chi-squared distribution with n degrees of freedom

f(x|n) = xn/2−1e−x/2

2n/2Γ
(n
2

) , (11)

where Γ is the Gamma-distribution (more below).
▶ E[x] = n
▶ V[x] = 2n

Example of a χ2[3] distribution:
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The F-distribution

If x1 and x2 are two independent chi-squared variables with
degrees of freedom parameters n1 and n2, respectively, then the
ratio

F[n1, n2] =
x1/n1
x2/n2

(12)

has the F distribution with n1 and n2 degrees of freedom.

47 / 109



The student t-distribution

If z is an N[0, 1] variable and x is χ2[n] and is independent of z,
then the ratio

t[n] =
z√
x/n

. (13)

has the t distribution with n degrees of freedom.
Example for the t distributions with 3 and 10 degrees of
freedom with the standard normal distribution.

Comparing (12) with n1 = 1 and (13), if t ∼ t[n], then t2 ∼ F[1, n].
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The t[30] approx. the standard normal
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Approximating a χ2

For degrees of freedom greater than 30 the distribution of the
chi-squared variable x is approx.

z = (2x)1/2 − (2n− 1)1/2, (14)

which is approximately standard normally distributed. Thus,

Prob(χ2[n] ≤ a) ≈ Φ[(2a)1/2 − (2n− 1)1/2].
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2.6 Other Useful Distributions



The lognormal distribution
The lognormal distribution, denoted LN[µ, σ2], has been
particularly useful in modeling the size distributions.

f(x) =
1√
2πσx

e−
1

2[(ln x−µ)/σ]2 , x > 0

A lognormal variable x has
▶ E[x] = eµ+σ2/2, and
▶ Var[x] = e2µ+σ2

(eσ
2 − 1).

If y ∼ LN[µ, σ2], then ln y ∼ N[µ, σ2].

51 / 109



The gamma distribution
The general form of the gamma distribution is

f(x) =
λP

Γ(P)
e−λxxP−1, x ≥ 0, λ > 0,P > 0. (15)

Many familiar distributions are special cases, including the
exponential distribution(P = 1) and
chi-squared(λ = 1/2,P = n/2). The Erlang distribution results
if P is a positive integer. The mean is P/λ, and the variance is
P/λ2. The inverse gamma distribution is the distribution of 1/x,
where x has the gamma distribution.
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The beta distribution

For a variable constrained between 0 and c > 0, the
beta distribution has proved useful. Its density is

f(x) =
Γ(α+ β)

Γ(α)Γ(β)

(x
c

)α−1 (
1− x

c

)β−1 1

c
, x ≥ 0, λ > 0,P > 0.

It is symmetric if α = β, asymmetric otherwise. The mean is
ca/(α+ β), and the variance is c2αβ/[(α+ β + 1)(α+ β)2].
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The logistic distribution

The logistic distribution is an alternative if the normal cannot
model the mass in the tails; the cdf for a logistic random
variable is

F(x) = Λ(x) =
1

1 + e−x .

The density is f(x) = Λ(x)[1− Λ(x)]. The mean and variance of
this random variable are zero and π2/3.
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The Wishart distribution
The Wishart distribution describes the distribution of a random
matrix obtained as

f(W) =

n∑
i=1

(xi − µ)(xi − µ)′.

where xi is the ith of nK element random vectors from the
multivariate normal distribution with mean vector, µ, and
covariance matrix, Σ. The density of the Wishart random matrix
is

f(W) =
exp

[
−1

2 trace(Σ
−1W)

]
|W|−

1
2
(n−K−1)

2nK/2|Σ|K/2πK(K−1)/4
∏K

j=1 Γ
(

n+1−j
2

) .
The mean matrix is nΣ. For the individual pairs of elements inW,

Cov[wij,wrs] = n(σirσjs + σisσjr).

The Wishart distribution is a multivariate extension of χ2

distribution. If W ∼ W(n, σ2), then W/σ2 ∼ χ2[n].
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2.7 Bivariate Distributions, Covariance &
Conditional Moments



Bivariate distributions
For observations of two discrete variables y ∈ {1, 2} and x ∈ {1, 2, 3}, we can calculate

▶ the frequencies nx,y ,
▶ conditional distributions f(y|x) and f(x|y),
▶ joint distributions f(x, y), and
▶ marginal distributions fy(y) and fx(x).

freq. nx,y y = 1 y = 2 f(x) = nx/N cond. distr. f(y|x) y = 1 y = 2
∑
y

x = 1 1 2 3/10 f(y|x = 1) 1/3 2/3 1
x = 2 1 2 3/10 f(y|x = 2) 1/3 2/3 1
x = 3 0 4 4/10 f(y|x = 3) 0 1 1
f(y) = ny/N 2/10 8/10 1 f(y|x = 1, x = 2, x = 3) 1/5 4/5 1

cond. distr. joint distr. marginal pr.
f(x|y) f(x|y = 1) f(x|y = 2) f(x|y = 1, y = 2) f(y, x) f(y = 1, x) f(y = 2, x) fx(x)

x = 1 1/2 1/4 3/10 f(y, x = 1) 1/10 2/10 3/10
x = 2 1/2 1/4 3/10 f(y, x = 2) 1/10 2/10 3/10
x = 3 0 1/2 4/10 f(y, x = 3) 0 4/10 4/10∑
x

1 1 1 marginal pr. fy(y) 2/10 8/10 1
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Bivariate distributions
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Bivariate distributions
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x = 1 1/2 1/4 3/10 f(x = 1, y) 1/10 2/10 3/10
x = 2 1/2 1/4 3/10 f(x = 2, y) 1/10 2/10 3/10
x = 3 0 1/2 4/10 f(x = 3, y) 0 4/10 4/10∑
x

1 1 1 marginal pr. fy(y) 2/10 8/10 1
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The joint density function

Two random variables X and Y have joint density function

▶ if x and y are discrete

f(x, y) = Prob(a ≤ x ≤ b, c ≤ y ≤ d) =
∑

a≤x≤b

∑
c≤y≤d

f(x, y)

▶ if x and y are continuous

f(x, y) = Prob(a ≤ x ≤ b, c ≤ y ≤ d) =
∫ b

a

∫ d

c
f(x, y)dxdy

Example

With a = 1, b = 2, c = 2, d = 2 and the following f(x, y)

joint distr.
f(x, y) f(x, y = 1) f(x, y = 2)

f(x = 1, y) 1/10 2/10
f(x = 2, y) 1/10 2/10
f(x = 3, y) 0 4/10

Prob(1 ≤ x ≤ 2, 2 ≤ y ≤ 2) = f(y = 2, x = 1) + f(y = 2, x = 2) = 2/5.
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Bivariate probabilities

For values x and y of two discrete random variable X and Y, the
probability distribution

f(x, y) = Prob(X = x,Y = y).

The axioms of probability require

f(x, y) ≥ 0,∑
x

∑
y

f(x, y) = 1.

If X and Y are continuous,∫
x

∫
y
f(x, y)dxdy = 1.
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The bivariate normal distribution

The bivariate normal distribution is the joint distribution of two
normally distributed variables. The density is

f(x, y) =
1

2πσxσy
√

1− ρ2
e−1/2[(ϵ2x+ϵ2y−2ρϵxϵy)/(1−ρ2)], (16)

where ϵx =
x− µx

σx
, and ϵy =

y− µy

σy
.
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The joint cumulative density function
The probability of a joint event of X and Y have
joint cumulative density function

▶ if x and y are discrete

F(x, y) = Prob(X ≤ x,Y ≤ y) =
∑
X≤x

∑
Y≤y

f(x, y)

▶ if x and y are continuous

F(x, y) = Prob(X ≤ x,Y ≤ y) =
∫ x

−∞

∫ y

−∞
f(t, s)dsdt

Example
With x = 2, y = 2 and the following f(x, y)

f(x, y) f(x, y = 1) f(x, y = 2)

f(x = 1, y) 1/10 2/10
f(x = 2, y) 1/10 2/10
f(x = 3, y) 0 4/10

Prob(X ≤ 2, y ≤ 2) = f(x = 1, y = 1)+

f(x = 2, y = 1) + f(x = 1, y = 2) + f(x = 2, y =

2) = 3/5.
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Bivariate probabilities

For values x and y of two discrete random variable X and Y, the
cumulative probability distribution

F(x, y) = Prob(X ≤ x,Y ≤ y).

The axioms of probability require

0 ≤ F(x, y) ≤ 1,

F(∞,∞) = 1,

F(−∞, y) = 0,

F(x,−∞) = 0.

The marginal probabilities can be found from the joint cdf

fx(x) = P(X ≤ x) = Prob(X ≤ x,Y ≤ ∞) = F(x,∞).
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The marginal probability density

To obtain the marginal distributions fx(x) and fy(y) from the joint density

f(x, y), it is necessary to sum or integrate out the other variable. For example,

▶ if x and y are discrete

fx(x) =
∑
y

f(x, y),

▶ if x and y are continuous

fx(x) =
∫
y
f(x, s)ds.

Example

f(x, y) f(x, y = 1) f(x, y = 2) fx(x)

f(x = 1, y) 1/10 2/10 3/10
f(x = 2, y) 1/10 2/10 3/10
f(x = 3, y) 0 4/10 4/10
fy(y) 2/10 8/10 1

fx(x = 1) = f(x = 1, y = 1) + f(x = 1, y = 2) = 3/10.

fy(y = 2) = f(x = 1, y = 2) + f(x = 2, y = 2) + f(x = 3, y = 2) = 4/5.
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The bivariate normal distribution
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Why do we care about marginal distributions?
Means, variances, and higher moments of the variables in a
joint distribution are defined with respect to the marginal
distributions.

▶ Expectations

If x and y are discrete

E[x] =
∑
x

xfx(x) =
∑
x

x

[∑
y

f(x, y)

]
=

∑
x

∑
y

xf(x, y).

If x and y are continuous

E[x] =
∫
x
xfx(x) =

∫
x

∫
y
xf(x, y)dydx.

▶ Variances

Var[x] =
∑
x
(x− E[x])2fx(x) =

∑
x

∑
y
(x− E[x])2f(x, y).
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Covariance and correlation
For any function g(x, y),

E[g(x, y)] =



∑
x

∑
y

g(x, y)f(x, y) in the discrete case,

∫
x

∫
y
g(x, y)f(x, x)dydx in the continuous case.

(17)

The covariance of x and y is a special case:

Cov[x, y] = E[(x− µx)(y− µy)]

= E[xy]− µxµy = σxy

If x and y are independent, then f(x, y) = fx(x)fy(y) and

σxy =
∑
x

∑
y

fx(x)fy(y)(x− µx)(y− µy)

=
∑
x
(x− µx)fx(x)

∑
y
(y− µy)fy(y) = E[x− µx]E[y− µy] = 0.

▶ correlation ρxy =
σxy

σxσy
▶ σxy does not imply independence (except for bivariate normal).
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The conditional density function
The conditional distribution over y for each value of x (and vice versa) has conditional

densities

f(y|x) =
f(x, y)
fx(x)

f(x|y) =
f(x, y)
fy(y)

.

The marginal distribution of x averages the probability of x given y over the distribution

of all values of y fx(x) = E[f(x|y)f(y)]. If x and y are independent, knowing the value of y

does not provide any information about x, so fx(x) = f(x|y).

Example

cond. distr. joint distr. marginal pr.
f(x|y) f(x|y = 1) f(x|y = 2) f(x|y = 1, y = 2) f(x, y) f(x, y = 1) f(x, y = 2) fx(x)

x = 1 1/2 1/4 3/10 f(x = 1, y) 1/10 2/10 3/10
x = 2 1/2 1/4 3/10 f(x = 2, y) 1/10 2/10 3/10
x = 3 0 1/2 4/10 f(x = 3, y) 0 4/10 4/10∑
x

1 1 1 marginal pr. fy(y) 2/10 8/10 1

f(x = 3|y = 2) =
f(x = 3, y = 2)

fy(y = 2)
= 4/10 × 10/8 = 1/2.

fx(x = 2) = Ey[f(x = 2|y)f(y)] = f(x = 2|y = 1)f(y = 1) + f(x = 2|y = 2)f(y = 2)

= 1/2 × 2/10 + 1/4 × 8/10 = 1/10 + 2/10 = 3/10.
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Conditional mean aka regression

A random variable may always be written as

y = E[y|x] + (y− E[y|x])
= E[y|x] + ϵ.

Definition

The regression of y on x is obtained from the conditional mean

E[y|x] =



∑
y

yf(y|x) if y is discrete,

∫
y
yf(y|x)dy if y is continuous.

(18)
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Conditional mean aka regression

Predict y at values of x:∑
y

yf(y|x = 1) = 1× 2/3 + 2× 2/3 = 5/3.
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Conditional variance

A conditional variance is the variance of the conditional distribution:

Var[y|x] =



∑
y

(y− E[y|x])2 f(y|x) if y is discrete,

∫
y
(y− E[y|x])2 f(y|x)dy, if y is continuous.

(19)

The computation can be simplified by using

Var[y|x] = E[y2|x]− (E[y|x])2 ≥ 0. (20)

Decomposition of variance Var[y] = Ex[Var[y|x]] + Varx[E[y|x]]
▶ When we condition on x, the variance of y reduces on average.

Var[y] ≥ Ex[Var[y|x]]
▶ Ex[Var[y|x]] is the average of variances within each x
▶ Varx[E[y|x]] is variance between y averages in each x.
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Conditional expectations and variances

▶ E[y|x = 1] = 1.67, E[y|x = 2] = 1.67, and E[y|x = 3] = 2

▶ V[y|x = 1] = 0.22, V[y|x = 2] = 0.22, and V[y|x = 3] = 0

Example

f(y|x) y = 1 y = 2

f(y|x = 1) 1/3 2/3 1
f(y|x = 2) 1/3 2/3 1
f(y|x = 3) 0 1 1

E[y|x = 1] = 1/3 × 1 + 2/3 × 2 = 5/3

E[y|x = 2] = 1/3 × 1 + 2/3 × 2 = 5/3

E[y|x = 3] = 0 × 1 + 1 × 2 = 2

f(x, y) f(x, y = 1) f(x, y = 2) fx(x)

f(x = 1, y) 1/10 2/10 3/10
f(x = 2, y) 1/10 2/10 3/10
f(x = 3, y) 0 4/10 4/10
fy(y) 2/10 8/10 1

V[y|x = 1] = 1
2 ×1/3+2

2 ×2/3− (5/3)
2

= 2/9

V[y|x = 2] = 1
2 ×1/3+2

2 ×2/3− (5/3)
2

= 2/9

V[y|x = 3] = 1
2 × 0 + 2

2 × 1 − 2
2

= 0

alternatively (requiring more differences)

V[y|x = 1] = (1−5/3)
2×1/3+(2−5/3)

2×2/3 = 2/9
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Conditional expectations and variances
Average of variances within each x, E[V[y|x]] is less or equal total variance E[y].

Example
▶ Use the conditional mean to calculate E[y]:

E[y] = Ex[E[y|x]] = E[y|x = 1]f(x = 1) + E[y|x = 2]f(x = 2) + E[y|x = 3]f(x = 3)

= 5/3 × 3/10 + 5/3 × 3/10 + 2 × 4/10 = 9/5.

E[y] =
∑
y

fy(y) = 1 × 2/10 + 2 × 8/10 = 9/5.

▶ Variation in y, V[y|x = 1] = 0.22, V[y|x = 2] = 0.22, and V[y|x = 3] = 0 due to variation in x, is on

average

E[V[y|x]] = 3/10 × 2/9 + 3/10 × 2/9 + 4/10 × 0 = 2/15.

▶ For each conditional mean E[y|x = 1] = 5/3, E[y|x = 2] = 5/3, and E[y|x = 3] = 2, y varies with

V[E[y|x]] = E[(E[y|x])2] − (E[y|x])2 =

3/10 × (5/3)
2
+ 3/10 × (5/3)

2
+ 4/10 × (2)

2 − (9/5)
2

= 2/75.

▶ E[V[y|x]] + V[E[y|x]] = V[y] = 2/75 + 2/15 = 4/25.

With degree of freedom correction (n − 1) (as reported in software):

E[V[y|x]] + V[E[y|x]] = V[y] = 2/75/(10 − 1) × 10 + 2/15/(10 − 1) × 10 = 8/45.

73 / 109



Properties of the bivariate normal

Recall bivariate normal distribution is the joint distribution of
two normally distributed variables. The density is

f(x, y) =
1

2πσxσy
√

1− ρ2
e−1/2[(ϵ2x+ϵ2y−2ρϵxϵy)/(1−ρ2)], (21)

where ϵx =
x− µx

σx
, and ϵy =

y− µy

σy
.

The covariance is σxy = ρxyσxσy, where

▶ −1 < ρxy < 1 is the correlation between x and y

▶ µx, σx, µy, σy are means and standard deviations of the

marginal distributions of x or y
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Properties of the bivariate normal

If x and y are bivariately normally distributed

(x, y) ∼ N2[µx, µy, σ
2
x , σ

2
y , ρxy]

▶ the marginal distributions are normal

fx(x) = N[µx, σ
2
x ]

fy(y) = N[µy, σ
2
y ]

▶ the conditional distributions are normal

f(y|x) = N[α+ βx, σ2
y (1− ρ2)]

α = µy − βµx;β =
σxy

σ2
x

▶ f(x, y) = fx(x)fx(x) if ρxy = 0: x and y are independent if and

only if they are uncorrelated
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Useful rules

▶ ρxy =
σxy

σxσy
▶ E[ax+ by+ c] = aE[x] + bE[y] + c

▶ Var[ax+ by+ c] = a2Var[x] + b2Var[y] + 2abCov[x, y] =

Var[ax+ by]

▶ Cov[ax+by, cx+dy] = acVar[x]+bdVar[y]+(ad+bc)Cov[x, y]

▶ If X and Y are uncorrelated, then

Var[x+ y] = Var[x− y] = Var[x] + Var[y].
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Useful rules

▶ Linearity

E[ax+ by|z] = aE[x|z] + bE[y|z].

▶ Adam’s Law / Law of Iterated Expectation

E[y] = Ex[E[y|x]]

▶ Adam’s general Law / Law of Iterated Expectation

E[y|g2(g1(x))] = E[E[y|g1(x)]|g2(g1(x))]

▶ Independence

If x and y are independent, then

E[y] = E[y|x],

E[g1(x)g2(y)] = E[g1(x)]E[g2(y)].
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Useful rules

▶ Taking out what is known

E[g1(x)g2(y)|x] = g1(x)E[g2(y)|x].

▶ Projection of y by E[y|x], such that orthogonal to h(x)

E[(y− E[y|x])h(x)] = 0.

▶ Keeping just what is needed (y predictable from x needed, not

residual)

E[xy] = E[xE[y|x]].

▶ Eve’s Law (EVVE) / Law of Total Variance

Var[y] = Ex[Var[y|x]] + Varx[E[y|x]]

▶ ECCE law / Law of Total Covariance

Cov[x, y] = Ez[Cov[y, x|z]] + Covz[E[x|z], E[y|z]] 78 / 109



Useful rules

▶ Cov[x, y] = Covx[x, E[y|x]] =
∫
x
(x− E[x]) E[y|x]fx(x)dx.

▶ If E[y|x] = α+ βx, then α = E[y]− βE[x] and β =
Cov[x, y]
Var[x]

▶ Regression variance Varx[E[y|x]], because E[y|x] varies with

x

▶ Residual variance Ex[Var[y|x]] = Var[y]− Varx[E[y|x]],

because y varies around the conditional mean

▶ Decomposition of variance

Var[y] = Varx[E[y|x]] + Ex[Var[y|x]]
▶ Coefficient of determination =

regression variance
total variance

▶ If E[y|x] = α+ βx and if Var[y|x] is a constant, then

Var[y|x] = Var[y]
(
1− Corr2[y, x]

)
= σ2

y
(
1− σ2

xy
)
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The joint multivariate distribution

For three or more random variables, the joint pdf and joint cdf
are defined in a similar way to what we have already seen for
the case of two random variables.

▶ For discrete variables X1,X2, . . . ,Xn, the joint probability

mass function is

PX1,X2,...,Xn(x1, x2, . . . , xn) = PX1=x1,X2=x2,...,Xn=xn .

▶ The joint density in the continuous case is

fX1,X2,...,Xn(x1, x2, . . . , xn).
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Cumulative and marginal distributions

▶ We can integate the pdf over a set A to obtain the probability set A

P[(X1,X2, . . . ,Xn) ∈ A] =
∫

. . .

∫
A
. . .

∫
fX1,X2,...,Xn(x1, x2, . . . , xn)dx1dx2 . . . dxn.

▶ The cdf of xi can be obtained by integrating all other xj’s. For example,

FX1,X2,...,Xn(x1, x2, . . . , xn) = PX1≤x1,X2≤x2,...,Xn≤xn

=

∫ xn

−∞

∫ xn−1

−∞
. . .

∫ x1

−∞
fX1,X2,...,Xn(x1, x2, . . . , xn)dx1dx2 . . . dxn

▶ The marginal pdf of xi can be obtained by integrating all other xj’s.

For example,

fX1 =

∫ xn→∞

−∞
. . .

∫ x2→∞

−∞
fX1,X2,...,Xn(x1, x2, . . . , xn)dx2 . . . dxn.
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Integrating out
c = 1/3 for the three continuous random variables X,Y,Z with
joint pdf

fXYZ = c(x+ 2y+ 3z) for 0 ≤ x, y, z ≤ 1

and zero otherwise.

Example

FXYZ = 1 =

∫ z→∞

−∞

∫ y→∞

−∞

∫ x→∞

−∞
fX,Y,Z(x, y, z)dxdydz

=

∫ 1

0

∫ 1

0

∫ 1

0
c(x + 2y + 3z)dxdydz.

∫ 1

0
xdx =

x2

2

∣∣1
0

=
1

2
−

0

2
=

1

2
.

FXYZ = 1 =

∫ 1

0

∫ 1

0
c(1/2 + 2y + 3z)dydz.

∫ 1

0
ydy = 2

y2

2

∣∣1
0

=
2

2
− 2

0

2
= 1.

FXYZ = 1 =

∫ 1

0
c(3/2 + 3z)dz.

∫ 1

0
zdz = 3

z2

2

∣∣1
0

=
3

2
− 3

0

2
= 3/2.

FXYZ = 1 = 3c

c = 1/3.
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Marginal pdf
fX(x) = 1/3(x+ 5/2) for 0 ≤ x ≤ 1 and zero otherwise if the
three continuous random variables X,Y,Z are distributed with
joint pdf

fXYZ = c(x+ 2y+ 3z) for 0 ≤ x, y, z ≤ 1

and zero otherwise.

Example

fX =

∫ z→∞

−∞

∫ y→∞

−∞
fX,Y,Z(x, y, z)dydz

=

∫ 1

0

∫ 1

0
c(x + 2y + 3z)dydz.

∫ 1

0
ydy = 2

y2

2

∣∣1
0

=
2

2
− 2

0

2
= 1.

=

∫ 1

0
c(x + 1 + 3z)dz.

∫ 1

0
zdz = 3

z2

2

∣∣1
0

=
3

2
− 3

0

2
= 3/2.

= c(x + 5/2)

fX(x) = 1/3(x + 5/2) for 0 ≤ x ≤ 1 else 0.
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Independence and identical distribution

Analysis is simplified in the case of independent random
variables. If variables also have the same cdfs, they are
identically distributed.

With independence:

▶ PX1,X2,...,Xn(x1, x2, . . . , xn) = PX1
(x1)PX2

(x2) . . .PXn(xn)

▶ FX1,X2,...,Xn(x1, x2, . . . , xn) = FX1
(x1)FX2

(x2) . . . FXn(xn)

▶ fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1
(x1)fX2

(x2) . . . fXn(xn)

▶ E[X1,X2, . . . ,Xn] = E[X1]E[X2] . . . E[Xn]

If they are independent and identically distributed (i.i.d.)

▶ same marginal distribution FX1
(x) = FX2

(x) . . . FXn(x)

▶ same means E[X1,X2, . . . ,Xn] = E[X1]E[X2] . . . E[Xn] =
E[X1]E[X1] . . . E[X1] = E[X1]

n.
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2.8 Random Vectors & the Multivariate Normal



Random vectors and moments

For more than two random variables, matrix notation is useful,
because this makes the formulas more compact and lets us
use facts from linear algebra.
In a random vector elements are random variables. The mean
vector is

µ =


µ1

µ2
...
µn

 =


E[x1]
E[x2]
...

E[xn]

 = E[x]
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Random vectors and moments

The squared-deviations from the mean matrix is

(x−µ)(x−µ)′ =


(x1 − µ1)(x1 − µ1) (x1 − µ1)(x2 − µ2) · · · (x1 − µ1)(xn − µn)

(x2 − µ2)(x1 − µ1) (x2 − µ2)(x2 − µ2) · · · (x2 − µ2)(xn − µn)

...
...

...
...

(xn − µn)(x1 − µ1) (xn − µn)(x2 − µ2) · · · (xn − µn)(xn − µn)

 .

The expected value of each element in the matrix is the covariance of the two variables

in the product.

The variance-covariance matrix of the random vector x is

Var[x] = Σ = E[(x− µ)(x− µ)′] =


σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

...
...

...

σn1 σn2 · · · σnn

 = E[xx′]− µµ′.
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Random vectors and moments

By dividing σij by σiσj, we obtain the correlation matrix

R =


1 ρ12 ρ13 · · · ρ1n
ρ21 1 ρ23 · · · ρ2n
...

...
...

...
...

ρn1 ρn2 ρn3 · · · 1

 .
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Properties of the covariance matrix

Σ is a symmetric matrix because σij = σji.

▶ symmetric matrices can be diagonalized

▶ all the eigenvalues are real.

Covariance matrices are always positive semi-definite

▶ If y = a′(x− µ), E[yy′] = a′E[(x− µ)(x− µ)′]a = a′Σa ≥ 0,

Σ is positive semi-definite.

▶ If and only if det[Σ] > 0, implying that all eigenvalues are

larger than zero, Σ is positive definite.
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Linearity of expectations
What if we weight the random variables with a vector of
constants, a?

E[a1x1 + a2x2 + · · ·+ anxn] = E[a′x]
= a1E[x1] + a2E[x2] + · · ·+ anE[xn]
= a1µ1 + a2µ2 + · · ·+ anµn

= a′µ.

For the variance,

Var[a′x] = E
[(

a′x− E[a′x]
)2]

= E
[
a′ (x− E[x])2

]
= E[a′(x− µ)(x− µ)′a]

as E[x] = µ and a′(x− µ) = (x− µ)′a.
Because a is a vector of constants,

Var[a′x] = a′E[(x− µ)(x− µ)′]a = a′Σa =

n∑
i=1

n∑
j=1

aiajσij ≥ 0.
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Linearity in a system of equations

We can transform random vector x linearly to y using

y
m×1

= A
m×k

x
k×1

+ b
m×1

.


y1
y2
...
ym

 =


a11 a12 . . . a1k
a21 a22 . . . a2k
...

... . . .
...

am1 am2 . . . amk



x1
x2
...
xk

+


b1
b2
...

bm


Then linearity of expectation

E[y] = AE[x] + b.
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Linearity in a system of equations
We can transform the covariance matrix of a random vector x
linearly using y = Ax+ b to

Var[A′x] = A′ΣA.

Example

By linearity of expectation

E[y] = AE[x] + b.

Var[A′x] = E[(y− E[y])(y− E[y])′]

= E[(Ax+ b− AE[x]− b)(Ax+ b− AE[x]− b)′]

= E[A(x− E[x])(x− E[x])′A′]

= AE[(x− E[x])(x− E[x])′]A′

= A′ΣA.
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The method of transformations

We can transform the pdf f(x) of a random vector x linearly
using y = A

m×m
x

m×1
+ b with to f(y).

Example

x = A−1(y− b).

J = det(A−1)

f(y) =
1

|det(A)|
f(A−1(y− b)).
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The method of transformations

We can transform f(y) = f(B(y))|J| with y = G(x), B = G−1 and
Jacobian

J = det



∂h1
∂y1

∂h1
∂y2

. . .
∂h1
∂ym

∂h2
∂y1

∂h2
∂y2

. . .
∂h2
∂ym

...
... . . .

...
∂hm

∂y1
∂hm

∂y2
. . .

∂hm

∂ym


.

93 / 109



The method of transformations

Approximate each element of the linear or nonlinear functions y = g(x) with a

Taylor series. Let ji be the row vector of partial derivatives of the ith function

with respect to the n elements of x:

ji(x) = ∂gi(x)
∂x′

=
∂yi

∂x′
. (22)

We use µ as the expansion point. Then

gi(x) ≈ gi(µ) + ji(µ)(x− µ). (23)

From this we obtain

E[gi(x)] ≈ gi(µ),

Var[gi(x)] ≈ ji(µ)Σji(µ)′,

and

Cov[gi(x), gj(x)] ≈ ji(µ)Σjj(µ)′. (24)
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The method of transformations

Arranging the row vectors ji(µ) in a matrix J(µ). Then,

E[g(x)] ≃ g(µ) (25)

Var[g(x)] ≃ J(µ)ΣJ(µ)′. (26)
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Useful rules

▶ E[A′x] = A′µ

▶ Var[A′x] = A′ΣA ≥ 0 is a non-negative definite aka positive

semi-definite quadratic form

it is positive definite if A has full column rank, i.e.

det(A) = λ1λ2 . . . λn > 0.

▶ Σ = R− E[x]E[x]′

▶ Cov(x, y) = E[(x− E[x])]E[(y− E[y])′]

▶ f(y) = f(B(y))|J| with y = G(x), B = G−1 and Jacobian J.
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The multivariate normal distribution

Let the vector (x1, x2, . . . , xn) = x be the set of n random
variables, µ their mean vector, and Σ their covariance matrix.
The general form of the joint density is

f(x) = (2π)−n/2|Σ|−1/2e(−1/2)(x−µ)′Σ−1(x−µ). (27)

If R is the correlation matrix of the variables, Rij = σij/(σiσj) and
∆−1

i (x− µ) = (xi − µi)/σi, then

R = ∆−1Σ∆−1

Σ−1 = ∆−1R−1∆−1

f(x) = (2π)−n/2(σ1σ2 . . . σn)−1|R|−1/2e(−1/2)ϵR−1ϵ, (28)

where ϵi = (xi − µi)/σi.
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The multivariate normal distribution

If all variables are uncorrelated ρij = 0 and R = I, then the
density becomes

f(x) = (2π)−n/2(σ1σ2 . . . σn)
−1e−ϵ′ϵ/2. (29)

f(x) = f(x1)f(x2) . . . f(xn) =
n∏

i=1

f(xi). (30)

If σi = σ and µ = 0, then xi ∼ N[0, σ2] and ϵi = xi/σ, and the
density becomes the multivariate standard normal or spherical
normal distribution

f(x) = (2π)−n/2(σ2)−n/2e−x′x/(2σ2). (31)

Finally, if σ = 1,
f(x) = (2π)−n/2e−x′x/2. (32)
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The marginal normal distributions

Let x1 be any subset of the variables, including a single variable, and

let x2 be the remaining variables. Partition µ and Σ likewise so that

µ =

 µ1

µ2


and

Σ =

 Σ11 Σ12

Σ21 Σ22

 .

Theorem (Marginal and Conditional Normal Distributions)

If [µ1,µ2] have a joint multivariate normal distribution, then the

marginal distributions are

µ1 ∼ N(µ1,Σ11) µ2 ∼ N(µ2,Σ22). (33)
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The conditional normal distributions

Theorem

The conditional distribution of x1 given x2 is normal as well:

x1|x2 ∼ N(µ1.2,Σ11.2), (34)

where

µ1.2 = µ1 +Σ12Σ
−1
22 (x2 − µ2),

Σ11.2 = Σ11 −Σ12Σ
−1
22 Σ21.
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How do marginal, conditional and joint density relate?

f(x1, x2) = f1.2(x1|x2)f2(x2).

Multiplying the marginal distribution of x2 and the distribution
of x1 conditional on x2 gives the joint density.
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Properties of the normal

▶ Any linear function of a vector of joint normally distributed variables is

also normally distributed. If x ∼ N[µ,Σ], then

Ax+ b ∼ N[Aµ+ b,AΣA′].

▶ For normal random vector x, if Cov(xi, xj) = 0, then xi and xj are

independent.

▶ If x ∼ N[0, I] and C is a square matrix such that C′C = I, then

C′x ∼ N[0, I].

▶ Distribution of quadratic form in standard normal

If x ∼ N[0, I] and A is idempotent, then x′Ax has a χ2 distribution with

degrees of freedom equal to the number of unit roots of A, which is

equal to the rank of A.
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Properties of the normal

▶ Independence of idempotent quadratic forms

If x ∼ N[0, I] and x′Ax and x′Bx are two idempotent quadratic forms in x,

then x′Ax and x′Bx are independent if AB = 0.

▶ Independence of a linear and a quadratic form

A linear function Lx and a symmetric idempotent quadratic form x′Ax in

a standard normal vector are statistically independent if LA = 0.

▶ Distribution of a Standardized Normal Vector

If x ∼ N[µ,Σ], then Σ−1/2(x− µ) ∼ N[0, I].

▶ If x ∼ N[µ,Σ], then (x− µ)′Σ−1(x− µ) ∼ χ2[n].
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The classical normal linear regression model

Definition

Recall that any random variable y, can be written as its mean

plus the deviation from the mean. If we apply this tautology to

the multivariate normal, we obtain

y = E[y|x] + (y− E[y|x]) = α+ β′x+ ε,

where β = Σ−1
xx σxy is given earlier, α = µy − β′µx, and ε has a

normal distribution. We thus have, in this multivariate normal

distribution, the classical normal linear regression model.
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Transformation of bivariate random variables
Suppose that x1 and x2 have a joint distribution fx(x1, x2) and
that y1 and y2 are two monotonic functions of x1 and x2:

y1 = y1(x1, x2),
y2 = y2(x1, x2).

Because the functions are monotonic, the inverse
transformations,

x1 = x1(y1, y2),
x2 = x2(y1, y2),

exist. The Jacobian of the transformations is the matrix of
partial derivatives,

J =

[
∂x1/∂y1 ∂x1/∂y2
∂x2/∂y1 ∂x2/∂y2

]
=

[
∂x/∂y′

]
.

The joint distribution of y1 and y2 is

fy(y1, y2) = fx[x1(y1, y2), x2(y1, y2)]abs(|J|).
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Linear transformation of xi
Suppose that x1 and x2 are independently distributed N[0, 1],
and the transformations are

y1 = α1 + β11x1 + β12x2,
y2 = α2 + β21x1 + β22x2.

To obtain the joint distribution of y1 and y2, we first write the
transformations as

y = a+ Bx.

The inverse transformation is

x = B−1(y− a),

so the absolute value of the determinant of the Jacobian is

abs|J| = abs|B−1| = 1

abs|B|
.
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The joint distribution of x is the product of the marginal
distributions since they are independent.

fx(x) = (2π)−1e−(x21+x22)/2 = (2π)−1e−x′x/2.

Inserting the results for x(y) and J into fy(y1, y2) gives

fy(y) = (2π)−1 1

abs|B|
e−(y−a)′(BB′)−1(y−a)/2.
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Application: How to find the distribution a function of two random variables

Find y1(x1, x2) from
▶ form the joint distribution of the transformed variable

y1(x1, x2) and one of the original variables y2 = x2
▶ integrate (or sum) y2 of the joint distribution to obtain the

marginal distribution fy1(y1)
To find the distribution of y1(x1, x2), we might formulate

y1 = y1(x1, x2)
y2 = x2.

The absolute value of the determinant of the Jacobian would
then be

J = abs

∣∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

0 1

∣∣∣∣∣∣∣∣ = abs
∣∣∣∣( ∂x1

∂y1

)∣∣∣∣ .
The density of y1 would then be

fy1(y1) =
∫
y2

fx[x1(y1, y2), y2]abs|J|dy2.
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