

# Advanced Econometrics

## 02 Review of Probability and Distribution Theory

Eduard Brüll  
Fall 2025

---

## Advanced Econometrics

### 2. Random Variables & Probability

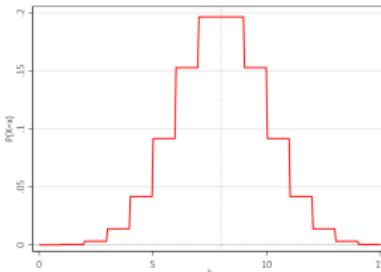
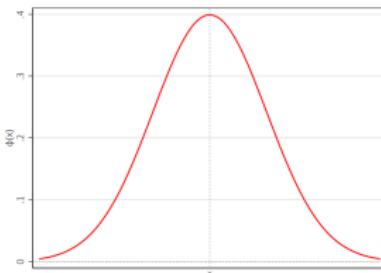
- 2.1 Random Variables & Probability
- 2.2 Expectations, Variance & Inequalities
- 2.3 Moment Generating Functions
- 2.4 Approximations & Jensen
- 2.5 Overview of Core Distributions
- 2.6 Other Useful Distributions
- 2.7 Bivariate Distributions, Covariance & Conditional Moments
- 2.8 Random Vectors & the Multivariate Normal

## 2.1 Random Variables & Probability

---

# Discrete and continuous random variables

- ▶ A random variable  $X$  is **discrete** if the set of outcomes  $x$  is either finite or countably infinite.
- ▶ The random variable  $X$  is **continuous** if the set of outcomes  $x$  is infinitely divisible and, hence, not countable.



# Discrete probabilities

For values  $x$  of a discrete random variable  $X$ ,  
the **probability mass function** (pmf)

$$f(x) = \text{Prob}(X = x).$$

The axioms of probability require

$$0 \leq \text{Prob}(X = x) \leq 1,$$

$$\sum_x f(x) = 1.$$

# Discrete cumulative probabilities

For values  $x$  of a discrete random variable  $X$ ,  
the **cumulative distribution function**

$$F(x) = \sum_{X \leq x} f(x) = \text{Prob}(X \leq x),$$

where

$$f(x_i) = F(x_i) - F(x_{i-1}).$$

## Example

Roll of a six-sided die

| $x$ | $f(x)$       | $F(X \leq x)$       |
|-----|--------------|---------------------|
| 1   | $f(1) = 1/6$ | $F(X \leq 1) = 1/6$ |
| 2   | $f(2) = 1/6$ | $F(X \leq 2) = 2/6$ |
| 3   | $f(3) = 1/6$ | $F(X \leq 3) = 3/6$ |
| 4   | $f(4) = 1/6$ | $F(X \leq 4) = 4/6$ |
| 5   | $f(5) = 1/6$ | $F(X \leq 5) = 5/6$ |
| 6   | $f(6) = 1/6$ | $F(X \leq 6) = 6/6$ |

What's the probability that you roll a 5 or higher?

$$F(X \geq 5) = 1 - F(X \leq 4) = 1 - 2/3 = 1/3.$$

# Continuous probabilities

For values  $x$  of a continuous random variable  $X$ , the probability is zero but the area under  $f(x) \geq 0$  in the range from  $a$  to  $b$  is the **probability density function** (pdf)

$$\text{Prob}(a \leq x \leq b) = \text{Prob}(a < x < b) = \int_a^b f(x)dx \geq 0.$$

The axioms of probability require

$$\int_{-\infty}^{+\infty} f(x)dx = 1.$$

$f(x) = 0$  outside the range of  $x$ .

The **cumulative distribution function** (cdf) is

$$F(x) = \int_{-\infty}^x f(t)dt,$$

$$f(x) = \frac{dF(x)}{dx}.$$

# Cumulative distribution function

For continuous and discrete variables,  $F(x)$  satisfies

## Properties of cdf

- $0 \leq F(x) \leq 1$
- If  $x > y$ , then  $F(x) \geq F(y)$
- $F(+\infty) = 1$
- $F(-\infty) = 0$

and

$$\text{Prob}(a < x \leq b) = F(b) - F(a).$$

# Symmetric distributions

For symmetric distributions

$$f(\mu - x) = f(\mu + x)$$

and

$$F(\mu + x) = 1 - \lim_{\epsilon \rightarrow 0} F(-(\mu + x + \epsilon)).$$

With  $\mu = 0$

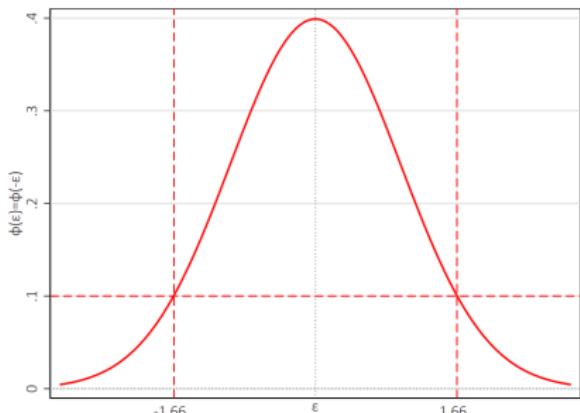
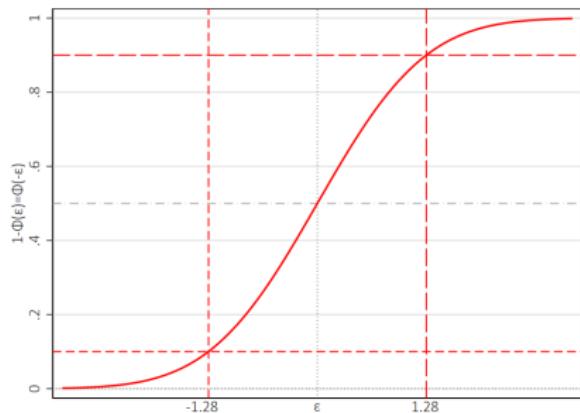
$$f(-x) = f(x)$$

and

$$F(x) = 1 - F(-x) + Pr(-x).$$

In the continuous case

$$F(x) = 1 - F(-x).$$



## 2.2 Expectations, Variance & Inequalities

---

# Mean of a random variable

The **mean**, or **expected value**, of a discrete random variable is

$$\mu = E[x] = \sum_x xf(x) \quad (1)$$

## Example

Roll of a six-sided die

| $x$     | $f(x) = 1/n$ | $F(X \leq x) = (x - a + 1)/n$ |
|---------|--------------|-------------------------------|
| $a = 1$ | $f(1) = 1/6$ | $F(X \leq 1) = 1/6$           |
| 2       | $f(2) = 1/6$ | $F(X \leq 2) = 2/6$           |
| 3       | $f(3) = 1/6$ | $F(X \leq 3) = 3/6$           |
| 4       | $f(4) = 1/6$ | $F(X \leq 4) = 4/6$           |
| 5       | $f(5) = 1/6$ | $F(X \leq 5) = 5/6$           |
| $b = 6$ | $f(6) = 1/6$ | $F(X \leq 6) = 6/6$           |

What's the expected value from rolling the dice?

$$E[x] = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = 3.5.$$

This is the mean (and the median) of a uniform distribution

$$(n + 1)/2 = (a + b)/2 = 3.5.$$

# Variance of a random variable

The **variance** of a random variable  $\sigma^2 > 0$  is

$$\sigma^2 = \text{Var}[x] = E[(x - \mu)^2] = \begin{cases} \sum_x (x - \mu)^2 f(x) & \text{if } x \text{ is discrete,} \\ \int_x (x - \mu)^2 f(x) dx & \text{if } x \text{ is continuous.} \end{cases} \quad (2)$$

## Example

Roll of a six-sided die. What's the variance  $V[x]$  from rolling the dice?

The probability of observing  $x$ ,  $Pr(X = x) = 1/n$ , is discretely uniformly distributed

$$E[x] = \frac{n+1}{2}; \quad (E[x])^2 = \frac{(n+1)^2}{4}.$$

$$E[x^2] = \sum_x Pr(X = x) = \frac{1}{n} \sum_{x=1}^n x^2 = \frac{(n+1)(2n+1)}{6} \text{ due to the seq. sum of squares.}$$

$$V[x] = E[x^2] - (E[x])^2.$$

$$V[x] = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4} = \frac{n^2 - 1}{12} = (6^2 - 1)/12 \approx 2.92.$$

# Chebychev inequality

For any random variable  $x$  and any positive constant  $k$ ,

$$\mathbb{P}(\mu - k\sigma \leq x \leq \mu + k\sigma) \geq \frac{1}{k^2}.$$

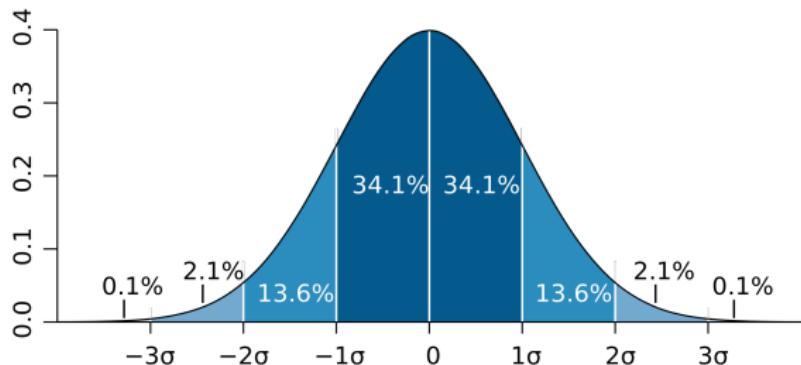
**Share outside  $k$  standard deviations.**

If  $x$  is normally distributed, the bound is  $1 - (2\Phi(k) - 1)$ .



95% of the observations are within 1.96 standard deviations for normally distributed  $x$ . If  $x$  is not normal, 95% are at most within 4.47 standard deviations.

# Normal coverage



# Central moments of a random variable

The central moments are

$$\mu_r = E[(x - \mu)^r].$$

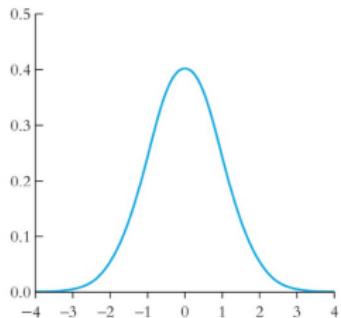
## Example

**Moments.** Two measures often used to describe a probability distribution are

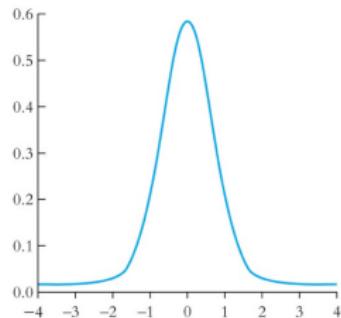
- ▶ expectation =  $E[(x - \mu)^1]$
- ▶ variance =  $E[(x - \mu)^2]$
- ▶ skewness =  $E[(x - \mu)^3]$
- ▶ kurtosis =  $E[(x - \mu)^4]$

The skewness is zero for symmetric distributions.

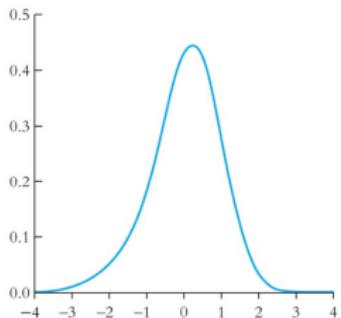
# Higher order moments



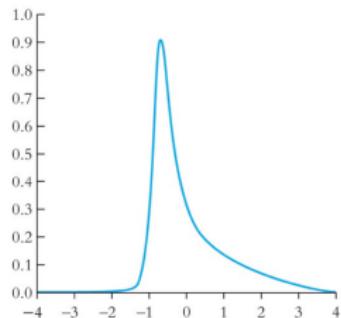
(a) Skewness = 0, kurtosis = 3



(b) Skewness = 0, kurtosis = 20



(c) Skewness = -0.1, kurtosis = 5



(d) Skewness = 0.6, kurtosis = 5

## 2.3 Moment Generating Functions

---

# Moment generating function

For the random variable  $X$ , with probability density function  $f(x)$ , if the function

$$M(t) = E[e^{tx}].$$

exists, then it is the **moment generating function (MGF)**.  $t$  is the integration variable of a Laplace-Stieltjes transformation

$$M(t) = L(-t).$$

- ▶ Often simpler alternative to working directly with probability density functions or cumulative distribution functions
- ▶ Not all random variables have moment-generating functions

The  $n$ th moment is the  $n$ th derivative of the moment-generating function, evaluated at  $t = 0$ .

## Example

The MGF for the standard normal distribution with  $\mu = 0, \sigma = 1$  is

$$M_Z(t) = e^{\mu t + \sigma^2 t^2 / 2} = e^{t^2 / 2}.$$

If  $x$  and  $y$  are independent, then the MGF of  $x + y$  is  $M_x(t)M_y(t)$ .

# Moment generating function

For  $x \sim N(\mu, \sigma^2)$  for some  $\mu, \sigma > 0$  with moment generating function  $M_x'(t) = \exp(\mu t + \frac{1}{2}\sigma^2 t^2)$ , the first moment generating function of  $x$  is

$$E[(x - \mu)^1] = M_x'(t) = (\mu + \sigma^2 t) \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right).$$

## Example

$$\begin{aligned} E[(x - \mu)^1] &= M_x'(t) = \frac{d\left[\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)\right]}{dt} \\ &= \frac{d\left[\mu t + \frac{1}{2}\sigma^2 t^2\right]}{dt} \frac{d\left[\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)\right]}{d(\mu t + \frac{1}{2}\sigma^2 t^2)} \\ &= (\mu + \sigma^2 t) \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right). \end{aligned}$$

# Moment generating function

If  $x \sim N(0, 1)$ ,

- ▶ the skewness is  $E[(x - \mu)^3] = 0$  and
- ▶ the kurtosis is  $E[(x - \mu)^4] = 3$ .

## Example

$$E[(x - \mu)^1] = M_x'(t) = (\mu + \sigma^2 t) \exp\left(\mu t + \frac{1}{2} \sigma^2 t^2\right) \text{ with } \mu = 0, \sigma = 1, t = 0 : E[x] = \mu = 0$$

$$E[(x - \mu)^2] = M_x''(t) = \left(\sigma^2 + (\mu + \sigma^2 t)^2\right) \exp\left(\mu t + \frac{1}{2} \sigma^2 t^2\right)$$

$$\text{with } \mu = 0, \sigma = 1, t = 0 : E[(x - \mu)^2] = \sigma^2 = 1$$

$$E[(x - \mu)^3] = M_x'''(t) = \left(3\sigma^2(\mu + \sigma^2 t) + (\mu + \sigma^2 t)^3\right) \exp\left(\mu t + \frac{1}{2} \sigma^2 t^2\right)$$

$$\text{with } \mu = 0, \sigma = 1, t = 0 : E[(x - \mu)^3] = 0$$

$$E[(x - \mu)^4] = M_x^{(4)}(t) = \left(3\sigma^4 + 6\sigma^2(\mu + \sigma^2 t)^2 + (\mu + \sigma^2 t)^4\right) \exp\left(\mu t + \frac{1}{2} \sigma^2 t^2\right)$$

$$\text{with } \mu = 0, \sigma = 1, t = 0 : E[(x - \mu)^4] = 3.$$

## 2.4 Approximations & Jensen

---

## Approximating mean and variance

For any two functions  $g_1(x)$  and  $g_2(x)$ ,

$$E[g_1(x) + g_2(x)] = E[g_1(x)] + E[g_2(x)]. \quad (3)$$

For the general case of a possibly nonlinear  $g(x)$ ,

$$E[g(x)] = \int_x g(x) f(x) dx, \quad (4)$$

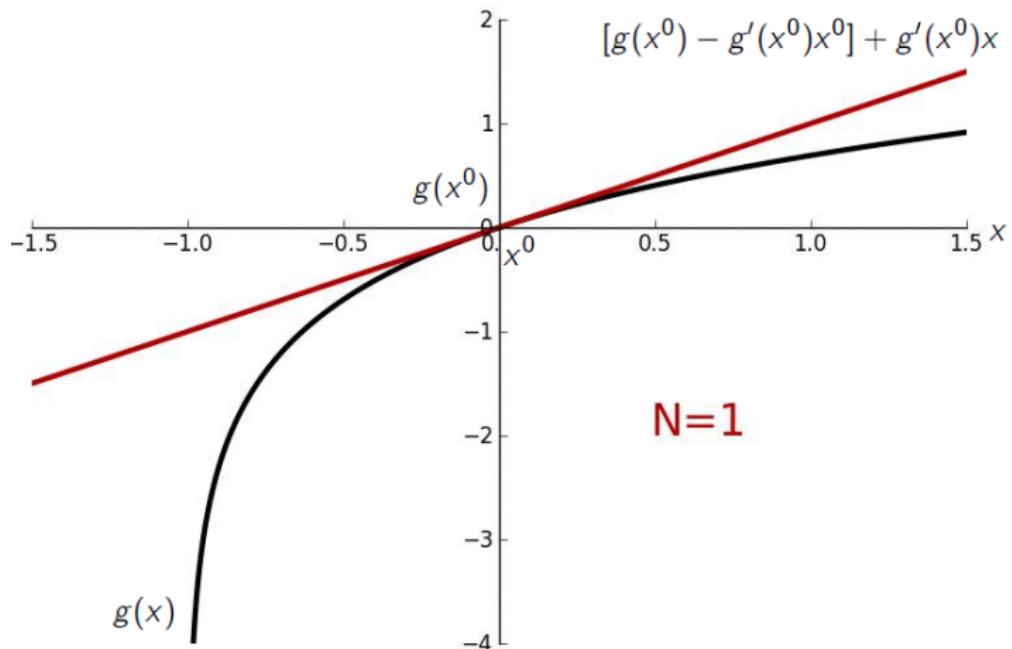
and

$$Var[g(x)] = \int_x (g(x) - E[g(x)])^2 f(x) dx. \quad (5)$$

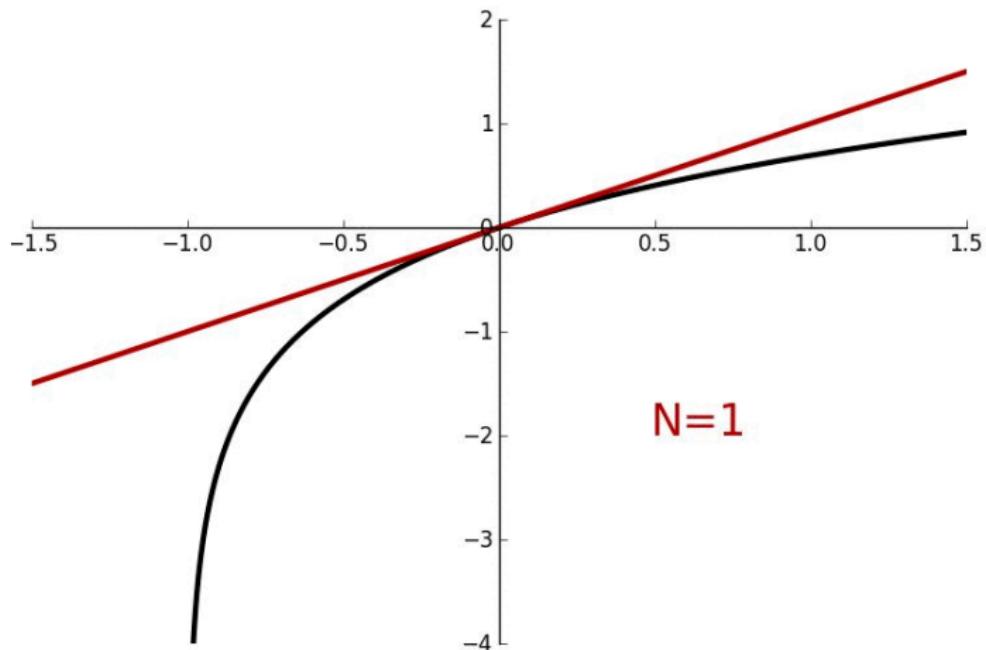
$E[g(x)]$  and  $Var[g(x)]$  can be approximated by a first order linear Taylor series:

$$g(x) \approx [g(x^0) - g'(x^0)x^0] + g'(x^0)x. \quad (6)$$

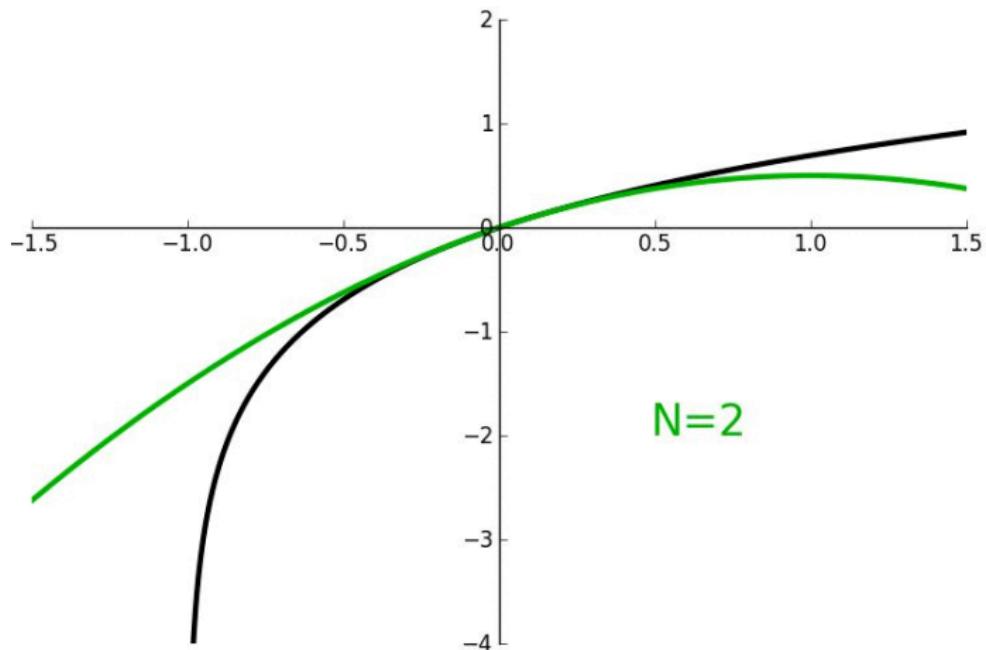
# Taylor approximation Order 1



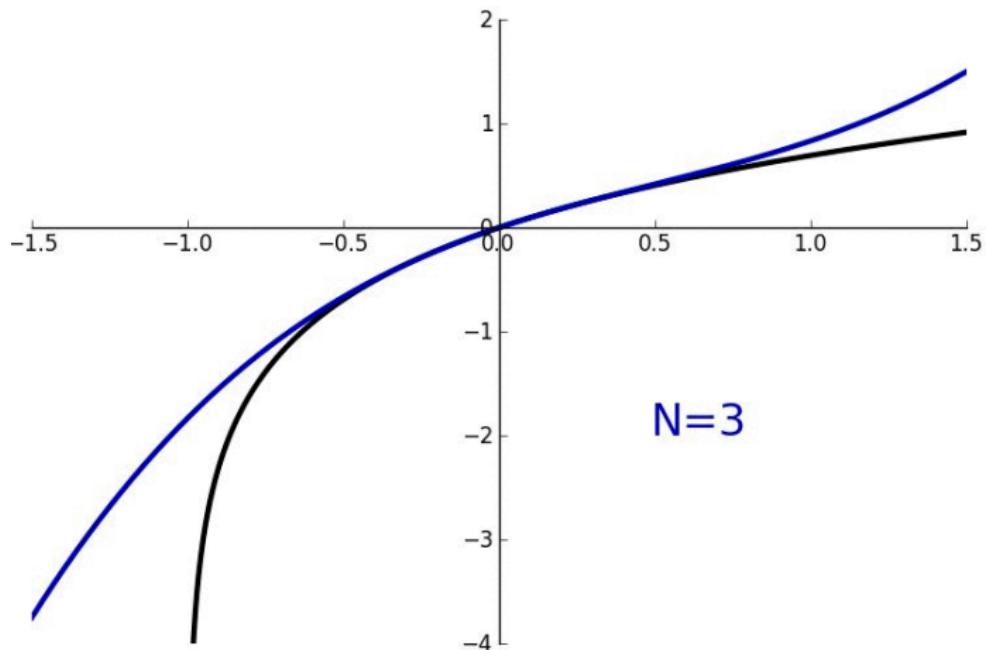
# Taylor approximation Order 1



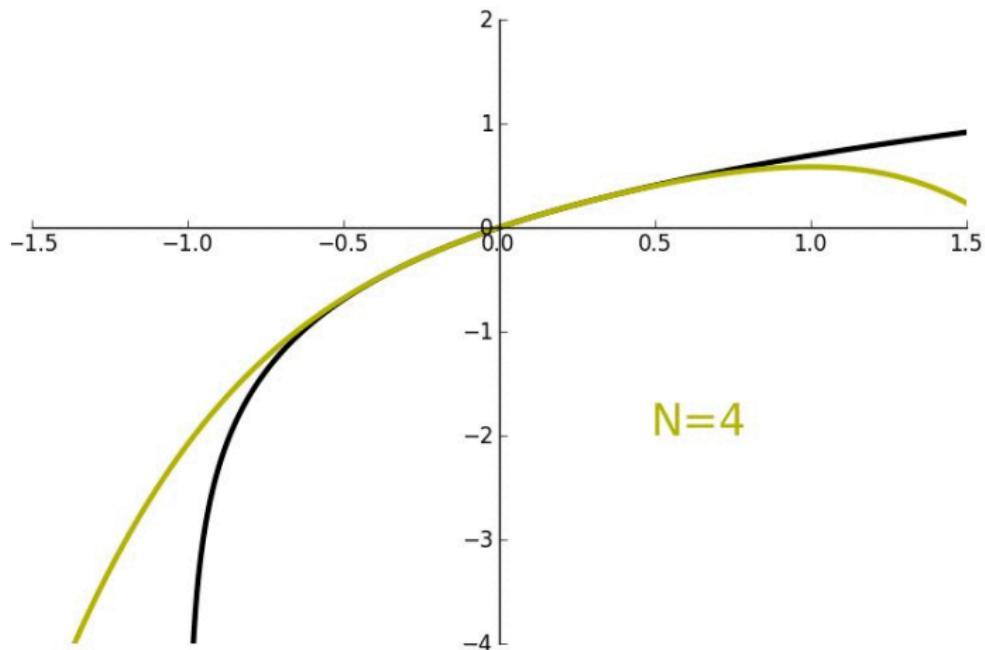
# Taylor approximation Order 2



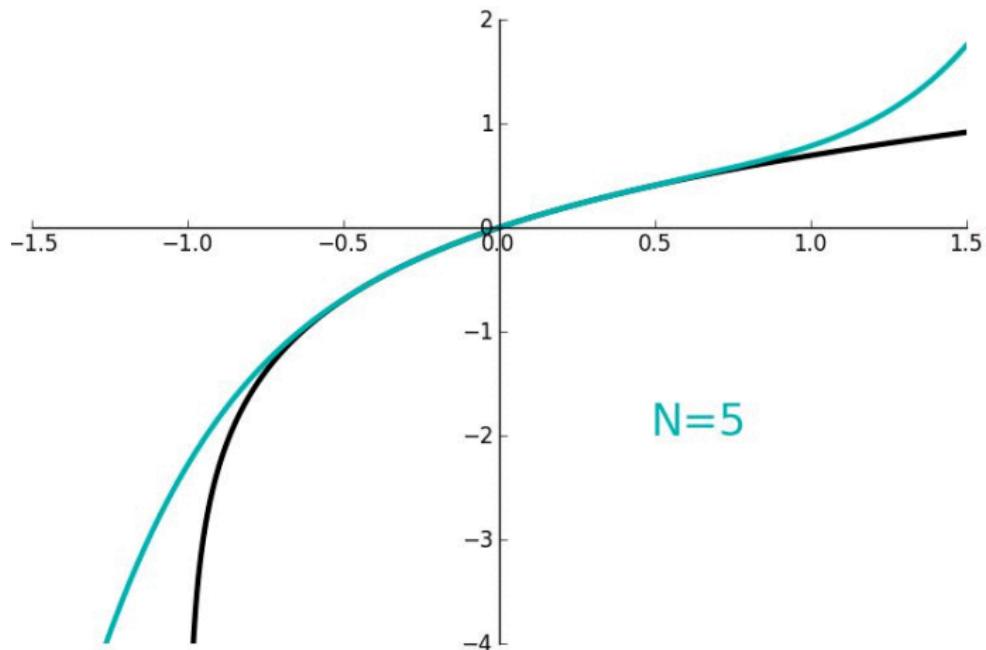
# Taylor approximation Order 3



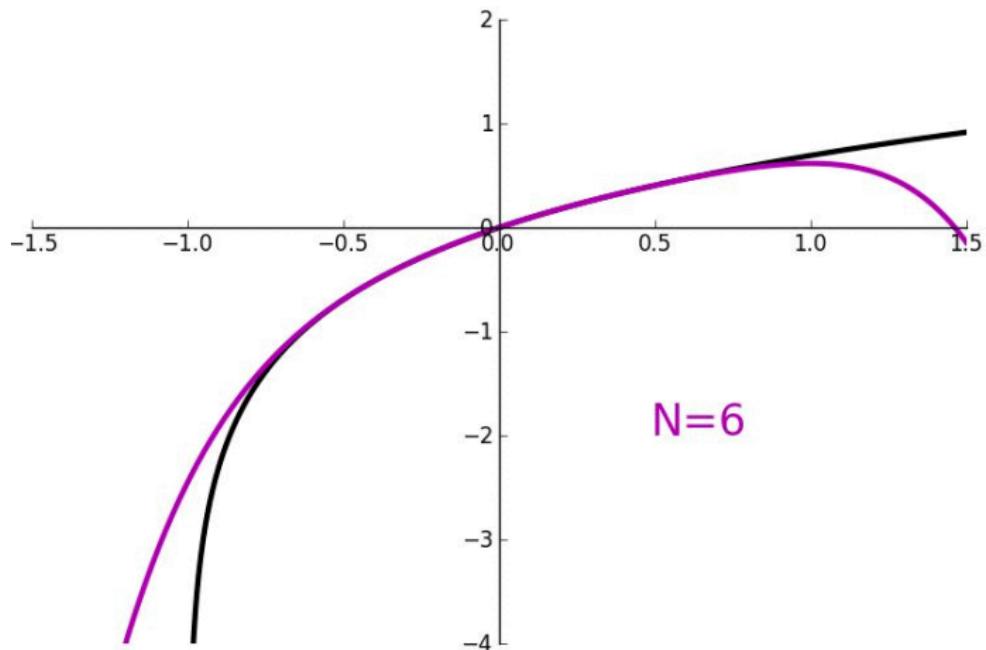
# Taylor approximation Order 4



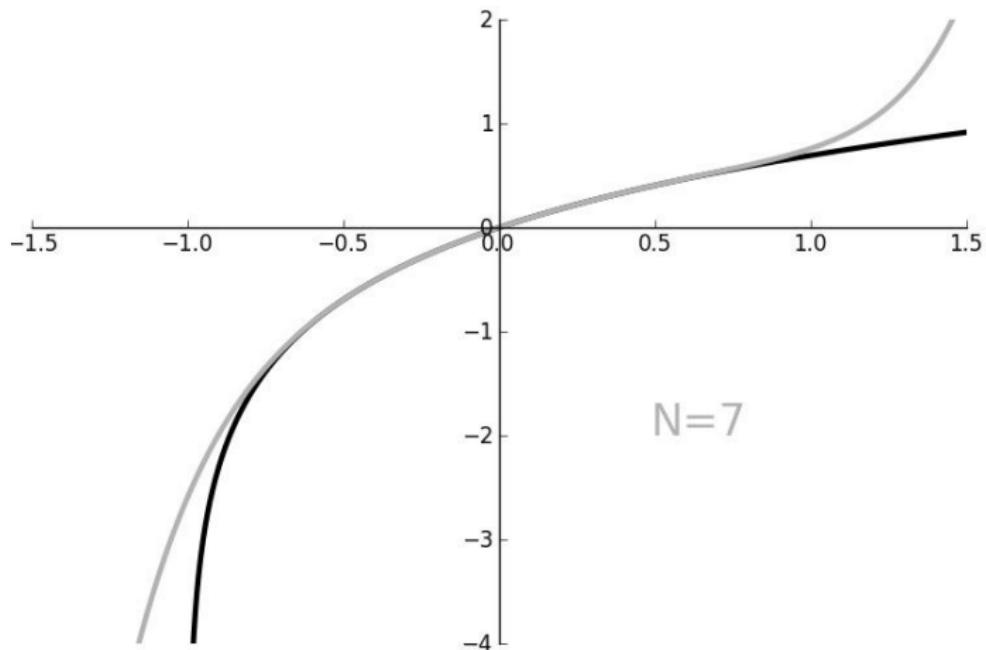
# Taylor approximation Order 5



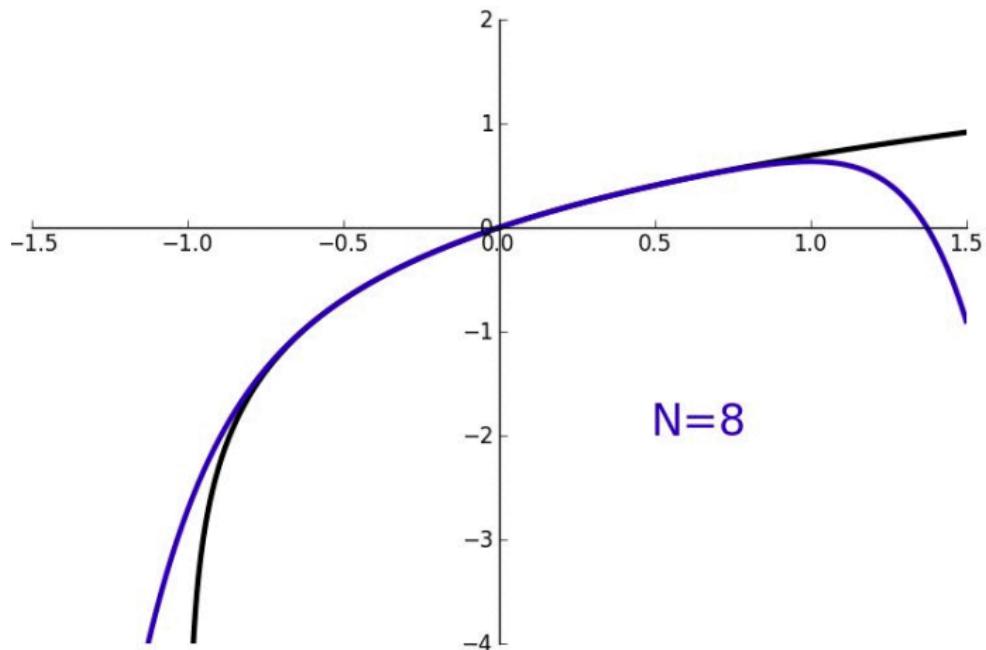
# Taylor approximation Order 6



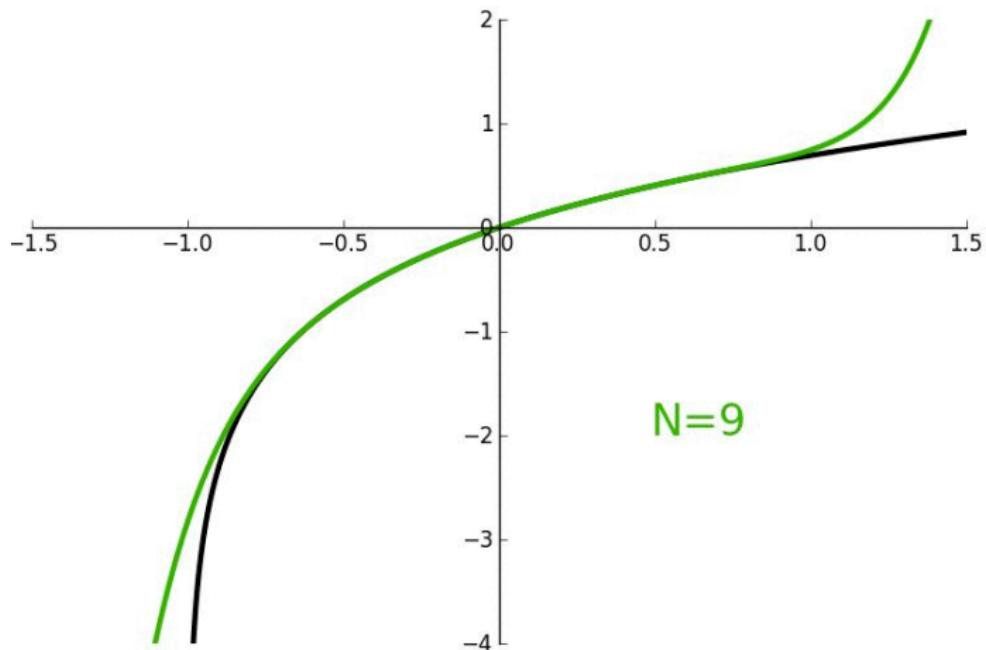
# Taylor approximation Order 7



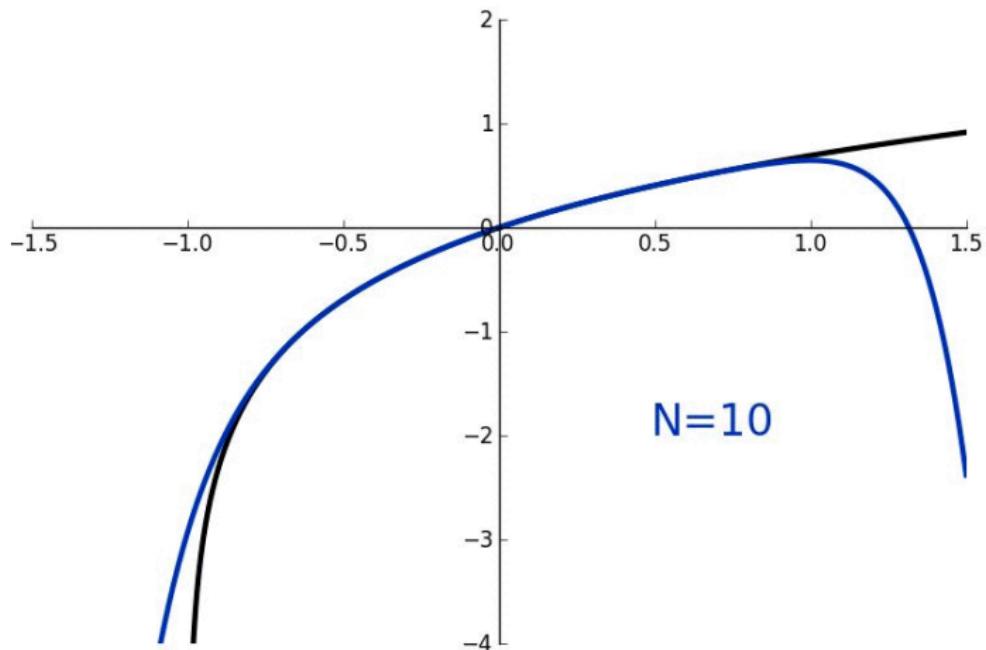
# Taylor approximation Order 8



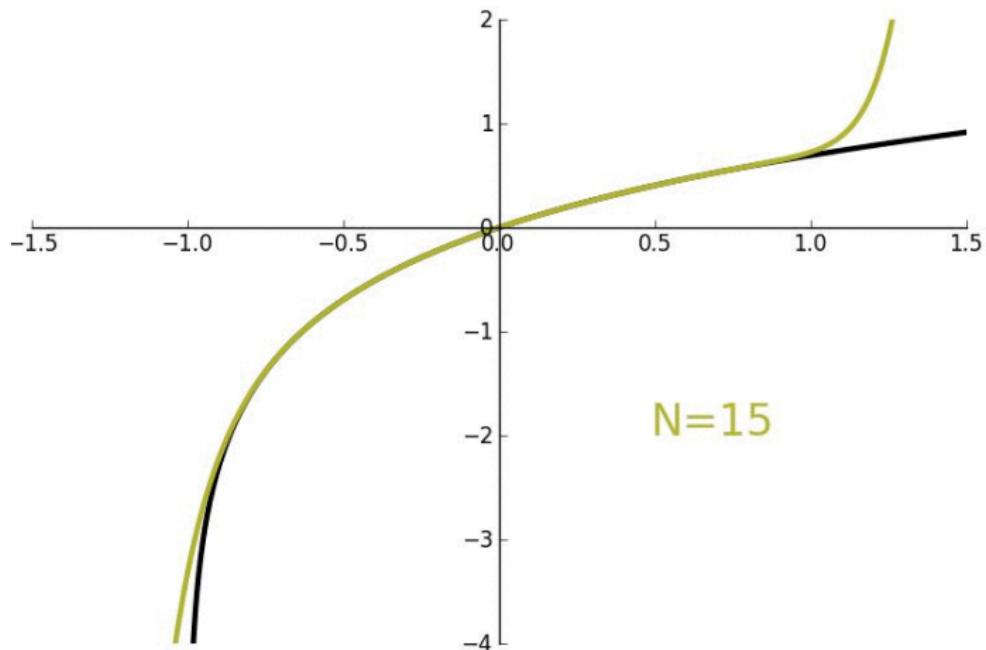
# Taylor approximation Order 9



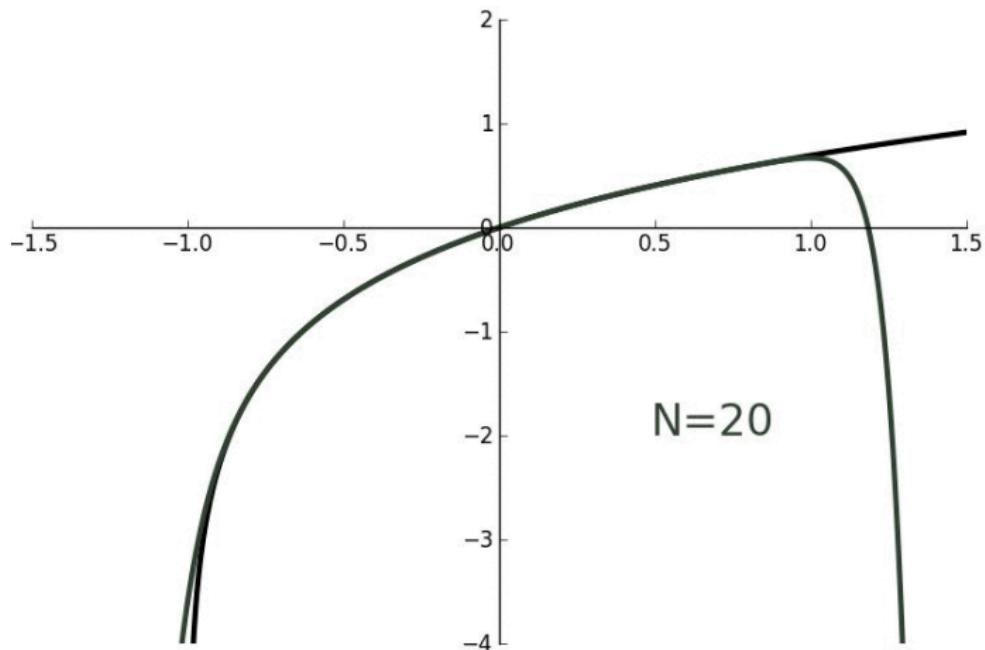
# Taylor approximation Order 10



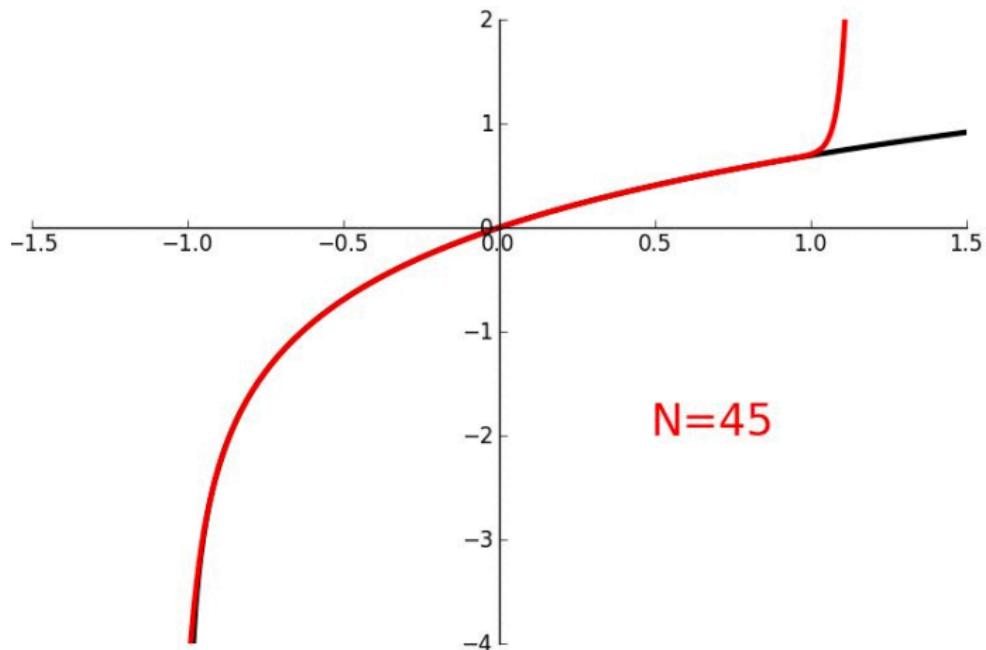
# Taylor approximation Order 15



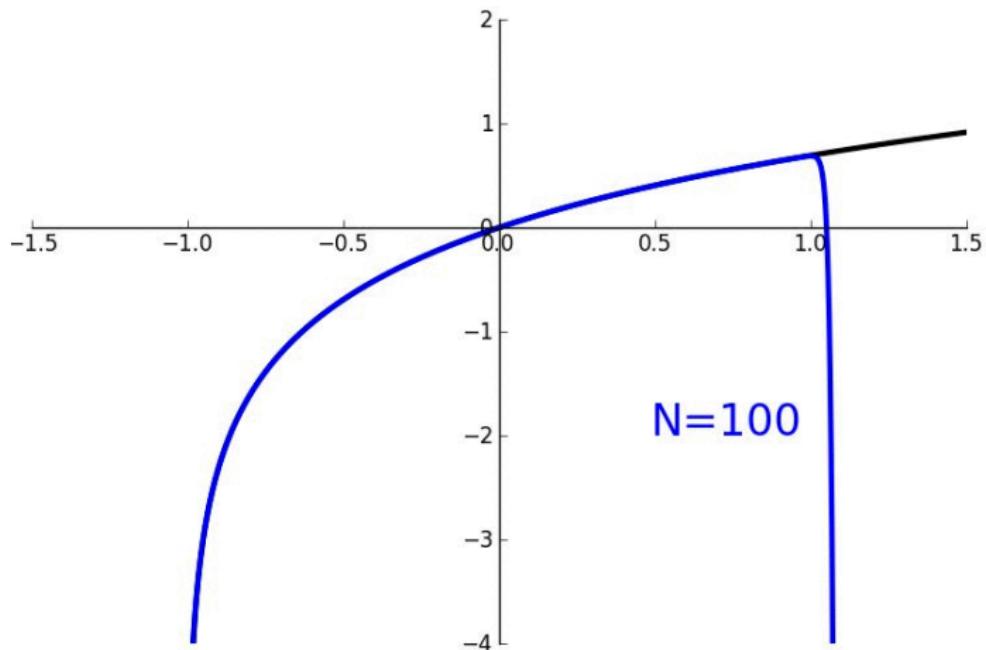
# Taylor approximation Order 20



# Taylor approximation Order 45



# Taylor approximation Order 100



# Approximating mean and variance

A natural choice for the expansion point is  $x^0 = \mu = E(x)$ .  
Inserting this value in Eq. (6) gives

$$g(x) \approx [g(\mu) - g'(\mu)\mu] + g'(\mu)x, \quad (7)$$

so that

$$E[g(x)] \approx g(\mu), \quad (8)$$

and

$$Var[g(x)] \approx [g'(\mu)]^2 Var[x]. \quad (9)$$

## Example

**Isoelastic utility.**  $c_{bad} = 10.00$  Euro;  $c_{good} = 100.00$  Euro; probability good outcome 50%

$$\mu = E[c] = 1/2 \times c_{bad} + 1/2 \times c_{good} = 55.00 \text{ Euro}$$

$$u(c) = c^{1/2}$$

$$u(\mu) = 7.42 \text{ approximates } E[u(c)] = 1/2 \times 10^{1/2} + 1/2 \times 100^{1/2} = 6.58$$

# Approximating mean and variance

## Example

**Isoelastic utility.**  $c_{bad} = 10.00$  Euro;  $c_{good} = 100.00$  Euro; probability good outcome 50%;  $\mu = 55.00$  Euro

$$u(c) = \ln(c)$$

$$u(\mu) = 4.01 \text{ approx.}$$

$$E[u(c)] = 1/2 \times \ln(10) + 1/2 \times \ln(100) = 3.45$$



### Jensen's

**inequality:**  $E[g(x)] \leq g(E[x])$  if  $g''(x) < 0$ .

$$V[u(c)] \approx (1/55)^2((10 - 55)^2 + (100 - 55)^2) = 1.34$$

$$V[u(c)] = (\ln(10) - E[u(c)])^2 + (\ln(100) - E[u(c)])^2 = 2.65$$

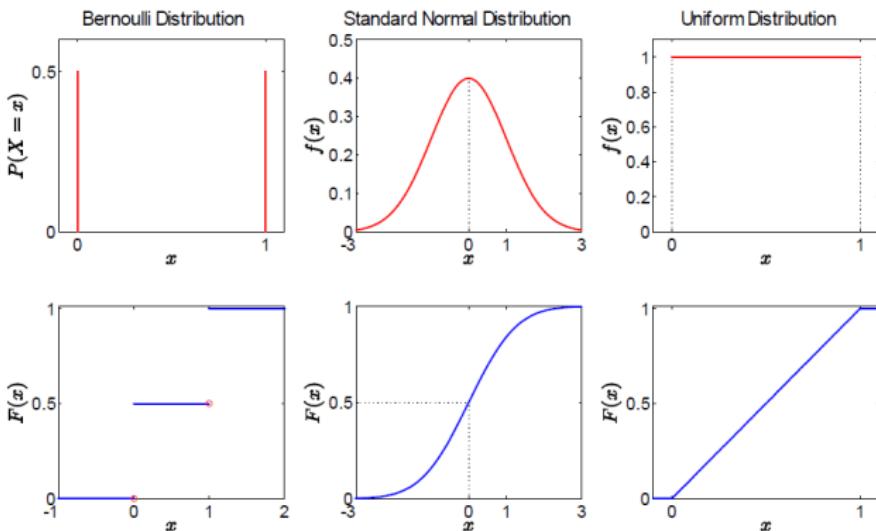
# Useful rules

- ▶  $\text{Var}[x] = E[x^2] - \mu^2$
- ▶  $E[x^2] = \sigma^2 + \mu^2$
- ▶ If  $a$  and  $b$  constants,  $\text{Var}[a + bx] = b^2 \text{Var}[x]$
- ▶  $\text{Var}[a] = 0$
- ▶ If  $g(x) = a + bx$  and  $a$  and  $b$  are constants,  
$$E[a + bx] = a + bE[x]$$
- ▶ Coverage  $\mathbb{P}(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2}$
- ▶ Skewness  $= E[(x - \mu)^3]$
- ▶ Kurtosis  $= E[(x - \mu)^4]$
- ▶ For symmetric distributions  $f(\mu - x) = f(\mu + x)$ ;  
$$1 - F(x) = F(-x)$$
- ▶  $E[g(x)] \approx g(\mu)$

## 2.5 Core Distributions

---

# Specific Distributions



# Discrete distributions

The **Bernoulli distribution** for a single binomial outcome (trial) is

$$\text{Prob}(x = 1) = p,$$

$$\text{Prob}(x = 0) = 1 - p,$$

where  $0 \leq p \leq 1$  is the probability of success.

- ▶  $E[x] = p$  and
- ▶  $E[x^2] = p \times 1^2 + (1 - p) \times 0^2 = p$
- ▶  $V[x] = E[x^2] - E[x]^2 = p - p^2 = p(1 - p).$

# Discrete distributions

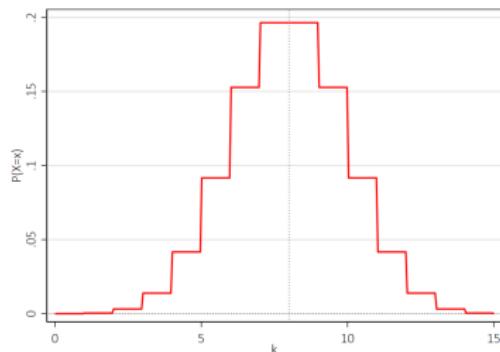
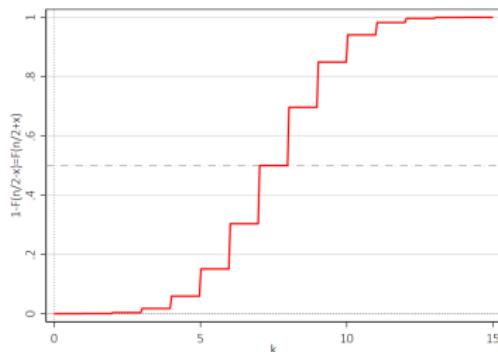
The distribution for  $x$  successes in  $n$  trials is the **binomial distribution**,

$$\text{Prob}(X = x) = \frac{n!}{(n - x)!x!} p^x (1 - p)^{n - x} \quad x = 0, 1, \dots, n.$$

The mean and variance of  $x$  are

- ▶  $E[x] = np$  and
- ▶  $V[x] = np(1 - p)$ .

Example of a binomial [ $n = 15, p = 0.5$ ] distribution:



# Discrete distributions

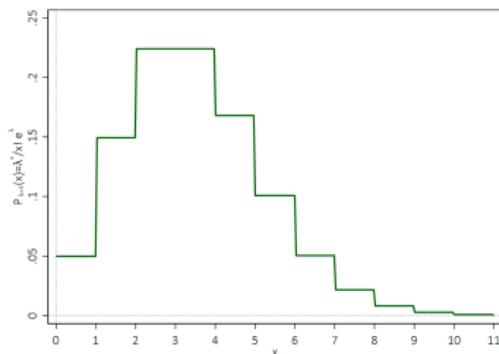
The limiting form of the binomial distribution,  $n \rightarrow \infty$ , is the **Poisson distribution**,

$$\text{Prob}(X = x) = \frac{e^\lambda \lambda^x}{x!}.$$

The mean and variance of  $x$  are

- ▶  $E[x] = \lambda$  and
- ▶  $V[x] = \lambda$ .

Example of a Poisson [3] distribution:

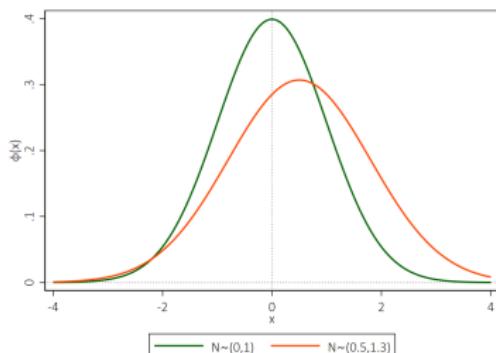


# The normal distribution

Random variable  $x \sim N[\mu, \sigma^2]$  is distributed according to the **normal distribution** with mean  $\mu$  and standard deviation  $\sigma$  obtained as

$$f(x|\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}. \quad (10)$$

The density is denoted  $\phi(x)$  and the cumulative distribution function is denoted  $\Phi(x)$  for the standard normal. Example of a standard normal, ( $x \sim N[0, 1]$ ), and a normal with mean 0.5 and standard deviation 1.3:



# Transformation of random variables

Continuous variable  $x$  may be transformed to a discrete variable  $y$ . Calculate the mean of variable  $x$  in the respective interval:

$$\text{Prob}(Y = \mu_1) = P(-\infty < X \leq a),$$

$$\text{Prob}(Y = \mu_2) = P(a < X \leq b),$$

$$\text{Prob}(Y = \mu_3) = P(b < X \leq \infty).$$

# Method of transformations

If  $x$  is a continuous random variable with pdf  $f_x(x)$  and if  $y = g(x)$  is a continuous monotonic function of  $x$ , then the density of  $y$  is obtained by

$$\text{Prob}(y \leq b) = \int_{-\infty}^b f_x(g^{-1}(y))|g^{-1}'(y)|dy.$$

With  $f_y(y) = f_x(g^{-1}(y))|g^{-1}'(y)|dy$ , this equation can be written as

$$\text{Prob}(y \leq b) = \int_{-\infty}^b f_y(y)dy.$$

## Example

If  $x \sim N[\mu, \sigma^2]$ , then the distribution of  $y = g(x) = \frac{x - \mu}{\sigma}$  is found as follows:

$$g^{-1}(y) = x = \sigma y + \mu$$

$$g^{-1}'(y) = \frac{dx}{dy} = \sigma$$

Therefore with  $f_x(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}[(g^{-1}(y)-\mu)^2/\sigma^2]}|g^{-1}'(y)|$

$$f_y(y) = \frac{1}{\sqrt{2\pi}\sigma}e^{-[(\sigma y + \mu) - \mu]^2/2\sigma^2}|\sigma| = \frac{1}{\sqrt{2\pi}}e^{-y^2/2}.$$

# Properties of the normal distribution

- ▶ Preservation under linear transformation:

If  $x \sim N[\mu, \sigma^2]$ , then  $(a + bx) \sim N[a + b\mu, b^2\sigma^2]$ .

- ▶ Convenient transformation  $a = -\mu/\sigma$  and  $b = 1/\sigma$ :

The resulting variable  $z = \frac{(x - \mu)}{\sigma}$  has the standard normal distribution with density

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}.$$

- ▶ If  $x \sim N[\mu, \sigma^2]$ , then  $f(x) = \frac{1}{\sigma} \phi\left[\frac{x - \mu}{\sigma}\right]$
- ▶  $Prob(a \leq x \leq b) = Prob\left(\frac{a - \mu}{\sigma} \leq \frac{x - \mu}{\sigma} \leq \frac{b - \mu}{\sigma}\right)$
- ▶  $\phi(-z) = \phi(z)$  and  $\Phi(-x) = 1 - \Phi(x)$  because of symmetry

# Method of transformations

If  $z \sim N[0, 1]$ , then  $z^2 \sim \chi^2[1]$  with pdf  $\frac{1}{\sqrt{2\pi y}} e^{-y/2}$ .

## Example

$$f_x(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$y = g(x) = x^2$$

$g^{-1}(y) = x = \pm\sqrt{y}$  there are two solutions to  $g_1, g_2$ .

$$g^{-1'}(y) = \frac{dx}{dy} = \pm 1/2y^{-1/2}$$

$$f_y(y) = f_x(g_1^{-1}(y))|g_1^{-1'}(y)| + f_x(g_2^{-1}(y))|g_2^{-1'}(y)|$$

$$f_y(y) = f_x(\sqrt{y})|1/2y^{-1/2}| + f_x(-\sqrt{y})|-1/2y^{-1/2}|$$

$$f_y(y) = \frac{1}{2\sqrt{2\pi y}} e^{-\frac{y}{2}} + \frac{1}{2\sqrt{2\pi y}} e^{-\frac{y}{2}} = \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}}$$

# Distributions derived from the normal

- ▶ If  $z \sim N[0, 1]$ , then  $z^2 \sim \chi^2[1]$  with  $E[z^2] = 1$  and  $V[z^2] = 2$ .
- ▶ If  $x_1, \dots, x_n$  are  $n$  independent  $\chi^2[1]$  variables, then

$$\sum_{i=1}^n x_i \sim \chi^2[n].$$

- ▶ If  $z_i, i = 1, \dots, n$ , are independent  $N[0, 1]$  variables, then

$$\sum_{i=1}^n z_i^2 \sim \chi^2[n].$$

- ▶ If  $z_i, i = 1, \dots, n$ , are independent  $N[0, \sigma^2]$  variables, then

$$\sum_{i=1}^n \left(\frac{z_i}{\sigma}\right)^2 \sim \chi^2[n].$$

- ▶ If  $x_1$  and  $x_2$  are independent  $\chi^2$  variables with  $n_1$  and  $n_2$  degrees of freedom, then

$$x_1 + x_2 \sim \chi^2[n_1 + n_2].$$

# The $\chi^2$ distribution

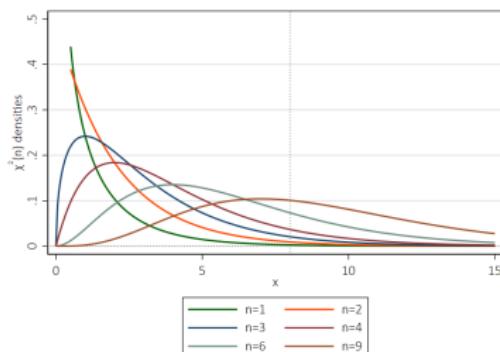
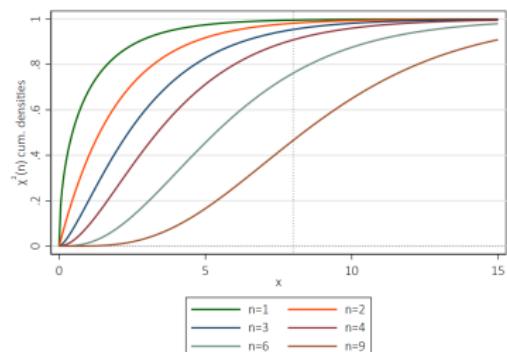
Random variable  $x \sim \chi^2[n]$  is distributed according to the **chi-squared distribution** with  $n$  degrees of freedom

$$f(x|n) = \frac{x^{n/2-1} e^{-x/2}}{2^{n/2} \Gamma\left(\frac{n}{2}\right)}, \quad (11)$$

where  $\Gamma$  is the Gamma-distribution (more below).

- ▶  $E[x] = n$
- ▶  $V[x] = 2n$

Example of a  $\chi^2[3]$  distribution:

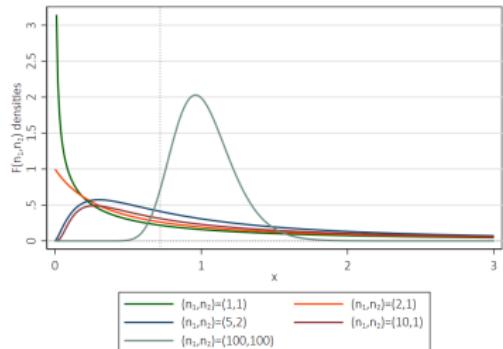
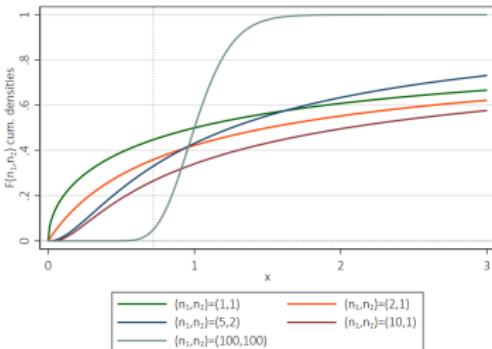


# The F-distribution

If  $x_1$  and  $x_2$  are two independent chi-squared variables with degrees of freedom parameters  $n_1$  and  $n_2$ , respectively, then the ratio

$$F[n_1, n_2] = \frac{x_1/n_1}{x_2/n_2} \quad (12)$$

has the **F distribution** with  $n_1$  and  $n_2$  degrees of freedom.



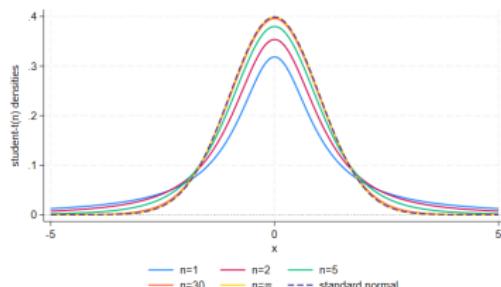
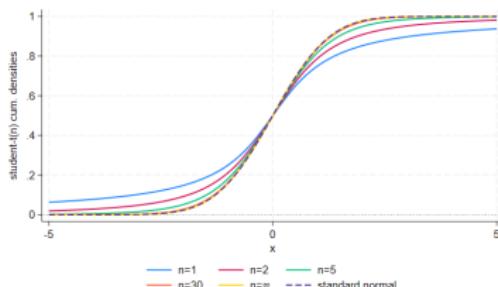
# The student t-distribution

If  $z$  is an  $N[0, 1]$  variable and  $x$  is  $\chi^2[n]$  and is independent of  $z$ , then the ratio

$$t[n] = \frac{z}{\sqrt{x/n}}. \quad (13)$$

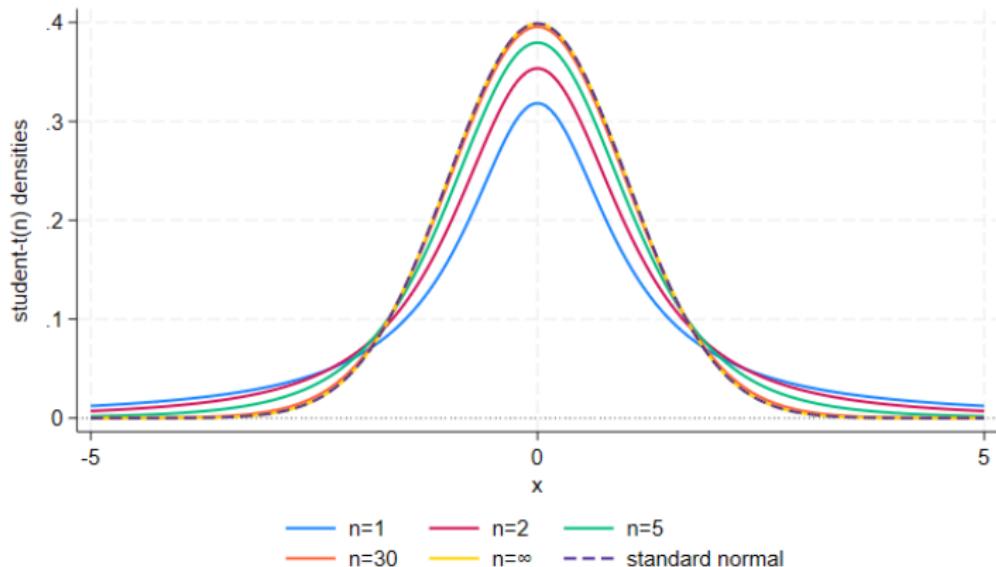
has the **t distribution** with  $n$  degrees of freedom.

Example for the  $t$  distributions with 3 and 10 degrees of freedom with the standard normal distribution.



Comparing (12) with  $n_1 = 1$  and (13), if  $t \sim t[n]$ , then  $t^2 \sim F[1, n]$ .

# The $t[30]$ approx. the standard normal



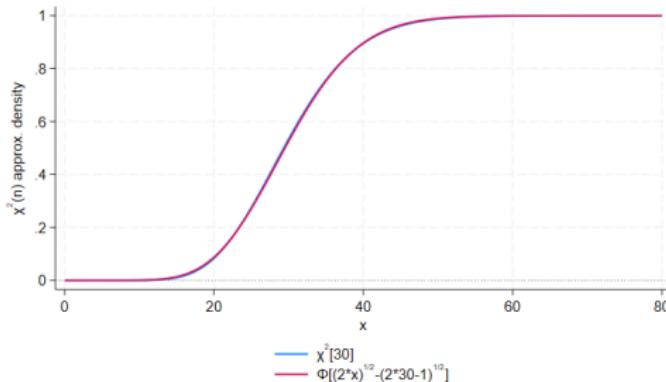
# Approximating a $\chi^2$

For degrees of freedom greater than 30 the distribution of the chi-squared variable  $x$  is approx.

$$z = (2x)^{1/2} - (2n - 1)^{1/2}, \quad (14)$$

which is approximately standard normally distributed. Thus,

$$\text{Prob}(\chi^2[n] \leq a) \approx \Phi[(2a)^{1/2} - (2n - 1)^{1/2}].$$



## 2.6 Other Useful Distributions

---

# The lognormal distribution

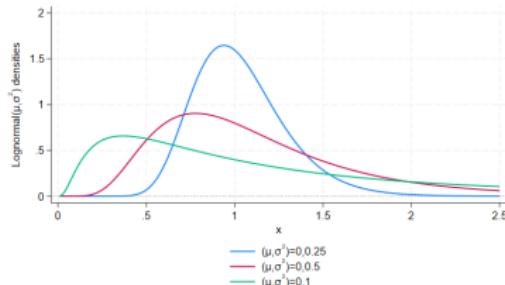
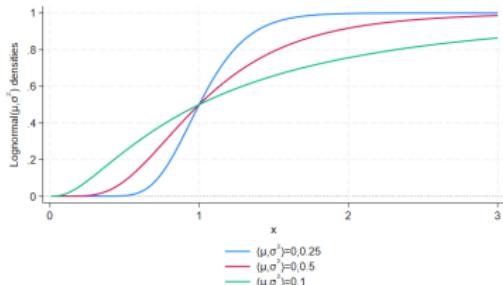
The **lognormal distribution**, denoted  $LN[\mu, \sigma^2]$ , has been particularly useful in modeling the size distributions.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{1}{2[(\ln x - \mu)/\sigma]^2}}, \quad x > 0$$

A lognormal variable  $x$  has

- ▶  $E[x] = e^{\mu + \sigma^2/2}$ , and
- ▶  $Var[x] = e^{2\mu + \sigma^2}(e^{\sigma^2} - 1)$ .

If  $y \sim LN[\mu, \sigma^2]$ , then  $\ln y \sim N[\mu, \sigma^2]$ .

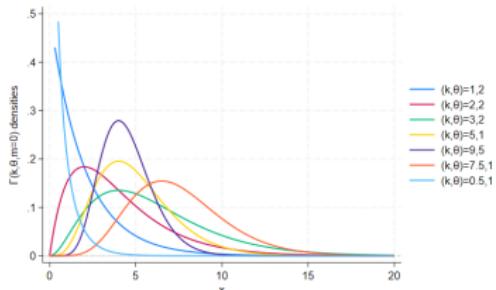
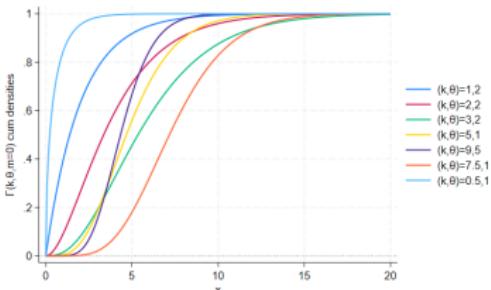


## The gamma distribution

The general form of the **gamma distribution** is

$$f(x) = \frac{\lambda^P}{\Gamma(P)} e^{-\lambda x} x^{P-1}, \quad x \geq 0, \lambda > 0, P > 0. \quad (15)$$

Many familiar distributions are special cases, including the **exponential distribution** ( $P = 1$ ) and **chi-squared** ( $\lambda = 1/2, P = n/2$ ). The **Erlang distribution** results if  $P$  is a positive integer. The mean is  $P/\lambda$ , and the variance is  $P/\lambda^2$ . The **inverse gamma distribution** is the distribution of  $1/x$ , where  $x$  has the gamma distribution.

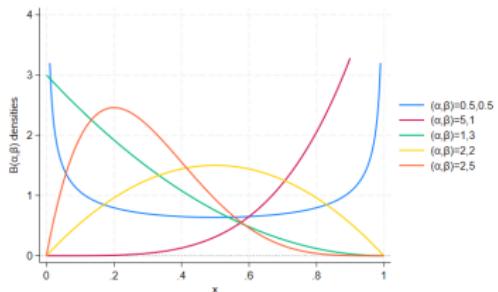
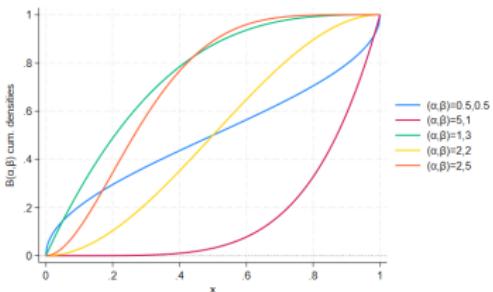


# The beta distribution

For a variable constrained between 0 and  $c > 0$ , the **beta distribution** has proved useful. Its density is

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x}{c}\right)^{\alpha-1} \left(1 - \frac{x}{c}\right)^{\beta-1} \frac{1}{c}, \quad x \geq 0, \lambda > 0, P > 0.$$

It is symmetric if  $\alpha = \beta$ , asymmetric otherwise. The mean is  $ca/(\alpha + \beta)$ , and the variance is  $c^2\alpha\beta/[(\alpha + \beta + 1)(\alpha + \beta)^2]$ .

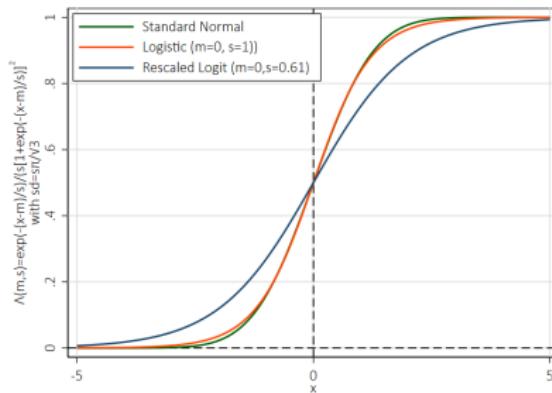


# The logistic distribution

The **logistic distribution** is an alternative if the normal cannot model the mass in the tails; the cdf for a logistic random variable is

$$F(x) = \Lambda(x) = \frac{1}{1 + e^{-x}}.$$

The density is  $f(x) = \Lambda(x)[1 - \Lambda(x)]$ . The mean and variance of this random variable are zero and  $\pi^2/3$ .



# The Wishart distribution

The **Wishart distribution** describes the distribution of a random matrix obtained as

$$f(\mathbf{W}) = \sum_{i=1}^n (\mathbf{x}_i - \boldsymbol{\mu})(\mathbf{x}_i - \boldsymbol{\mu})'$$

where  $\mathbf{x}_i$  is the  $i$ th of  $nK$  element random vectors from the multivariate normal distribution with mean vector,  $\boldsymbol{\mu}$ , and covariance matrix,  $\boldsymbol{\Sigma}$ . The density of the Wishart random matrix is

$$f(\mathbf{W}) = \frac{\exp\left[-\frac{1}{2}\text{trace}(\boldsymbol{\Sigma}^{-1}\mathbf{W})\right] |\mathbf{W}|^{-\frac{1}{2}(n-K-1)}}{2^{nK/2} |\boldsymbol{\Sigma}|^{K/2} \pi^{K(K-1)/4} \prod_{j=1}^K \Gamma\left(\frac{n+1-j}{2}\right)}.$$

The mean matrix is  $n\boldsymbol{\Sigma}$ . For the individual pairs of elements in  $\mathbf{W}$ ,

$$\text{Cov}[w_{ij}, w_{rs}] = n(\sigma_{ir}\sigma_{js} + \sigma_{is}\sigma_{jr}).$$

The Wishart distribution is a multivariate extension of  $\chi^2$  distribution. If  $\mathbf{W} \sim W(n, \sigma^2)$ , then  $\mathbf{W}/\sigma^2 \sim \chi^2[n]$ .

## 2.7 Bivariate Distributions, Covariance & Conditional Moments

---

# Bivariate distributions

For observations of two discrete variables  $y \in \{1, 2\}$  and  $x \in \{1, 2, 3\}$ , we can calculate

- ▶ the frequencies  $n_{x,y}$ ,
- ▶ conditional distributions  $f(y|x)$  and  $f(x|y)$ ,
- ▶
- ▶

| freq. $n_{x,y}$ | $y = 1$ | $y = 2$ | $f(x) = n_x/N$ | cond. distr. $f(y x)$      | $y = 1$ | $y = 2$ | $\sum_y$ |
|-----------------|---------|---------|----------------|----------------------------|---------|---------|----------|
| $x = 1$         | 1       | 2       | 3/10           | $f(y x = 1)$               | 1/3     | 2/3     | 1        |
| $x = 2$         | 1       | 2       | 3/10           | $f(y x = 2)$               | 1/3     | 2/3     | 1        |
| $x = 3$         | 0       | 4       | 4/10           | $f(y x = 3)$               | 0       | 1       | 1        |
| $f(y) = n_y/N$  | 2/10    | 8/10    | 1              | $f(y x = 1, x = 2, x = 3)$ | 1/5     | 4/5     | 1        |

| cond. distr. |              |              |                     |
|--------------|--------------|--------------|---------------------|
| $f(x y)$     | $f(x y = 1)$ | $f(x y = 2)$ | $f(x y = 1, y = 2)$ |
| $x = 1$      | 1/2          | 1/4          | 3/10                |
| $x = 2$      | 1/2          | 1/4          | 3/10                |
| $x = 3$      | 0            | 1/2          | 4/10                |
| $\sum_x$     | 1            | 1            | 1                   |

# Bivariate distributions

For observations of two discrete variables  $y \in \{1, 2\}$  and  $x \in \{1, 2, 3\}$ , we can calculate

- ▶ the frequencies  $n_{x,y}$ ,
- ▶ conditional distributions  $f(y|x)$  and  $f(x|y)$ ,
- ▶ joint distributions  $f(x,y)$ , and
- ▶

| freq. $n_{x,y}$ | $y = 1$ | $y = 2$ | $f(x) = n_x/N$ | cond. distr. $f(y x)$      | $y = 1$ | $y = 2$ | $\sum_y$ |
|-----------------|---------|---------|----------------|----------------------------|---------|---------|----------|
| $x = 1$         | 1       | 2       | 3/10           | $f(y x = 1)$               | 1/3     | 2/3     | 1        |
| $x = 2$         | 1       | 2       | 3/10           | $f(y x = 2)$               | 1/3     | 2/3     | 1        |
| $x = 3$         | 0       | 4       | 4/10           | $f(y x = 3)$               | 0       | 1       | 1        |
| $f(y) = n_y/N$  | 2/10    | 8/10    | 1              | $f(y x = 1, x = 2, x = 3)$ | 1/5     | 4/5     | 1        |

| cond. distr. |              |              |                     | joint distr.  |               |               |
|--------------|--------------|--------------|---------------------|---------------|---------------|---------------|
| $f(x y)$     | $f(x y = 1)$ | $f(x y = 2)$ | $f(x y = 1, y = 2)$ | $f(x, y)$     | $f(x, y = 1)$ | $f(x, y = 2)$ |
| $x = 1$      | 1/2          | 1/4          | 3/10                | $f(x = 1, y)$ | 1/10          | 2/10          |
| $x = 2$      | 1/2          | 1/4          | 3/10                | $f(x = 2, y)$ | 1/10          | 2/10          |
| $x = 3$      | 0            | 1/2          | 4/10                | $f(x = 3, y)$ | 0             | 4/10          |
| $\sum_x$     | 1            | 1            | 1                   |               |               |               |

# Bivariate distributions

For observations of two discrete variables  $y \in \{1, 2\}$  and  $x \in \{1, 2, 3\}$ , we can calculate

- ▶ the frequencies  $n_{x,y}$ ,
- ▶ conditional distributions  $f(y|x)$  and  $f(x|y)$ ,
- ▶ joint distributions  $f(x,y)$ , and
- ▶ marginal distributions  $f_y(y)$  and  $f_x(x)$ .

| freq. $n_{x,y}$ | $y = 1$ | $y = 2$ | $f(x) = n_x/N$ | cond. distr. $f(y x)$      | $y = 1$ | $y = 2$ | $\sum_y$ |
|-----------------|---------|---------|----------------|----------------------------|---------|---------|----------|
| $x = 1$         | 1       | 2       | 3/10           | $f(y x = 1)$               | 1/3     | 2/3     | 1        |
| $x = 2$         | 1       | 2       | 3/10           | $f(y x = 2)$               | 1/3     | 2/3     | 1        |
| $x = 3$         | 0       | 4       | 4/10           | $f(y x = 3)$               | 0       | 1       | 1        |
| $f(y) = n_y/N$  | 2/10    | 8/10    | 1              | $f(y x = 1, x = 2, x = 3)$ | 1/5     | 4/5     | 1        |

| cond. distr. | joint distr. |              |                     | marginal pr.          |
|--------------|--------------|--------------|---------------------|-----------------------|
| $f(x y)$     | $f(x y = 1)$ | $f(x y = 2)$ | $f(x y = 1, y = 2)$ | $f_x(x)$              |
| $x = 1$      | 1/2          | 1/4          | 3/10                | $f(x = 1, y)$         |
| $x = 2$      | 1/2          | 1/4          | 3/10                | $f(x = 2, y)$         |
| $x = 3$      | 0            | 1/2          | 4/10                | $f(x = 3, y)$         |
| $\sum_x$     | 1            | 1            | 1                   | marginal pr. $f_y(y)$ |
|              |              |              |                     | 2/10                  |
|              |              |              |                     | 8/10                  |
|              |              |              |                     | 1                     |

# The joint density function

Two random variables  $X$  and  $Y$  have **joint density function**

- if  $x$  and  $y$  are discrete

$$f(x, y) = \text{Prob}(a \leq x \leq b, c \leq y \leq d) = \sum_{a \leq x \leq b} \sum_{c \leq y \leq d} f(x, y)$$

- if  $x$  and  $y$  are continuous

$$f(x, y) = \text{Prob}(a \leq x \leq b, c \leq y \leq d) = \int_a^b \int_c^d f(x, y) dx dy$$

## Example

With  $a = 1, b = 2, c = 2, d = 2$  and the following  $f(x, y)$

| joint distr.  | $f(x, y = 1)$ | $f(x, y = 2)$ |
|---------------|---------------|---------------|
| $f(x = 1, y)$ | 1/10          | 2/10          |
| $f(x = 2, y)$ | 1/10          | 2/10          |
| $f(x = 3, y)$ | 0             | 4/10          |

$$\text{Prob}(1 \leq x \leq 2, 2 \leq y \leq 2) = f(y = 2, x = 1) + f(y = 2, x = 2) = 2/5.$$

## Bivariate probabilities

For values  $x$  and  $y$  of two discrete random variable  $X$  and  $Y$ , the **probability distribution**

$$f(x, y) = \text{Prob}(X = x, Y = y).$$

The axioms of probability require

$$f(x, y) \geq 0,$$

$$\sum_x \sum_y f(x, y) = 1.$$

If  $X$  and  $Y$  are continuous,

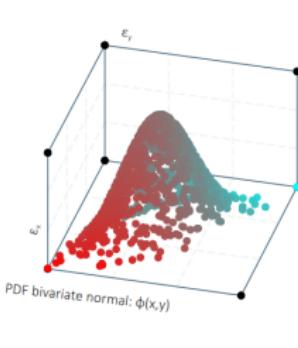
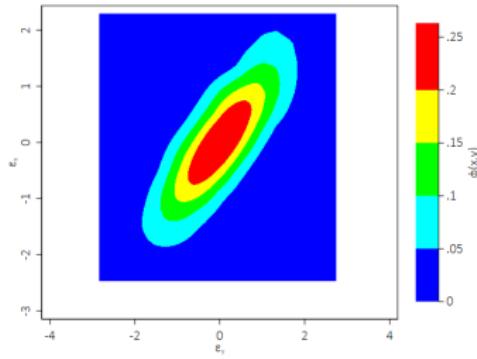
$$\int_x \int_y f(x, y) dx dy = 1.$$

# The bivariate normal distribution

The bivariate normal distribution is the joint distribution of two normally distributed variables. The density is

$$f(x, y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} e^{-1/2[(\epsilon_x^2 + \epsilon_y^2 - 2\rho\epsilon_x\epsilon_y)/(1-\rho^2)]}, \quad (16)$$

where  $\epsilon_x = \frac{x - \mu_x}{\sigma_x}$ , and  $\epsilon_y = \frac{y - \mu_y}{\sigma_y}$ .



# The joint cumulative density function

The probability of a joint event of  $X$  and  $Y$  have  
**joint cumulative density function**

- if  $x$  and  $y$  are discrete

$$F(x, y) = \text{Prob}(X \leq x, Y \leq y) = \sum_{X \leq x} \sum_{Y \leq y} f(x, y)$$

- if  $x$  and  $y$  are continuous

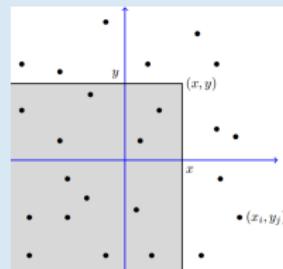
$$F(x, y) = \text{Prob}(X \leq x, Y \leq y) = \int_{-\infty}^x \int_{-\infty}^y f(t, s) ds dt$$

## Example

With  $x = 2, y = 2$  and the following  $f(x, y)$

| $f(x, y)$     | $f(x, y = 1)$ | $f(x, y = 2)$ |
|---------------|---------------|---------------|
| $f(x = 1, y)$ | 1/10          | 2/10          |
| $f(x = 2, y)$ | 1/10          | 2/10          |
| $f(x = 3, y)$ | 0             | 4/10          |

$$\begin{aligned} \text{Prob}(X \leq 2, Y \leq 2) &= f(x = 1, y = 1) + \\ &f(x = 2, y = 1) + f(x = 1, y = 2) + f(x = 2, y = 2) = 3/5. \end{aligned}$$



## Bivariate probabilities

For values  $x$  and  $y$  of two discrete random variable  $X$  and  $Y$ , the **cumulative probability distribution**

$$F(x, y) = \text{Prob}(X \leq x, Y \leq y).$$

The axioms of probability require

$$0 \leq F(x, y) \leq 1,$$

$$F(\infty, \infty) = 1,$$

$$F(-\infty, y) = 0,$$

$$F(x, -\infty) = 0.$$

The marginal probabilities can be found from the joint cdf

$$f_x(x) = P(X \leq x) = \text{Prob}(X \leq x, Y \leq \infty) = F(x, \infty).$$

# The marginal probability density

To obtain the marginal distributions  $f_x(x)$  and  $f_y(y)$  from the joint density  $f(x, y)$ , it is necessary to sum or integrate out the other variable. For example,

- ▶ if  $x$  and  $y$  are discrete

$$f_x(x) = \sum_y f(x, y),$$

- ▶ if  $x$  and  $y$  are continuous

$$f_x(x) = \int_y f(x, s) ds.$$

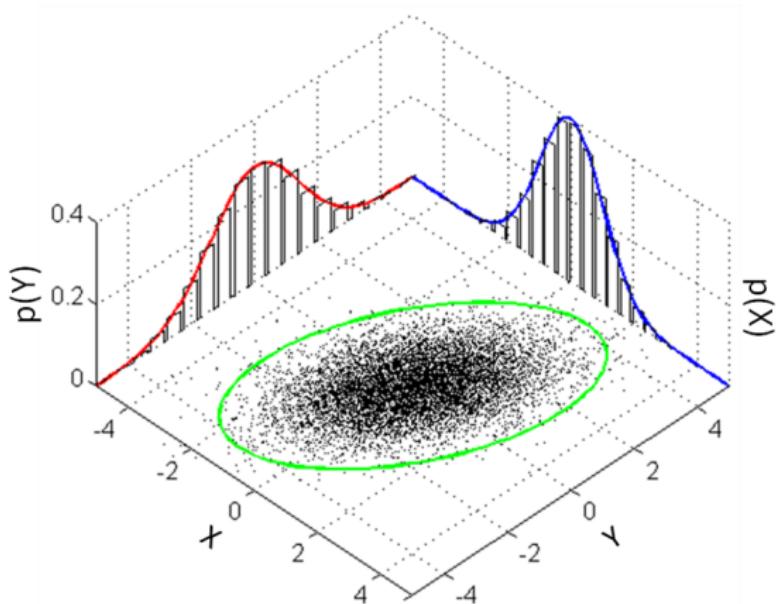
## Example

| $f(x, y)$     | $f(x, y = 1)$ | $f(x, y = 2)$ | $f_x(x)$ |
|---------------|---------------|---------------|----------|
| $f(x = 1, y)$ | 1/10          | 2/10          | 3/10     |
| $f(x = 2, y)$ | 1/10          | 2/10          | 3/10     |
| $f(x = 3, y)$ | 0             | 4/10          | 4/10     |
| $f_y(y)$      | 2/10          | 8/10          | 1        |

$$f_x(x = 1) = f(x = 1, y = 1) + f(x = 1, y = 2) = 3/10.$$

$$f_y(y = 2) = f(x = 1, y = 2) + f(x = 2, y = 2) + f(x = 3, y = 2) = 4/5.$$

# The bivariate normal distribution



# Why do we care about marginal distributions?

Means, variances, and higher moments of the variables in a joint distribution are defined with respect to the marginal distributions.

## ► Expectations

If  $x$  and  $y$  are discrete

$$E[x] = \sum_x xf_x(x) = \sum_x x \left[ \sum_y f(x, y) \right] = \sum_x \sum_y xf(x, y).$$

If  $x$  and  $y$  are continuous

$$E[x] = \int_x xf_x(x) = \int_x \int_y xf(x, y) dy dx.$$

## ► Variances

$$Var[x] = \sum_x (x - E[x])^2 f_x(x) = \sum_x \sum_y (x - E[x])^2 f(x, y).$$

# Covariance and correlation

For any function  $g(x, y)$ ,

$$E[g(x, y)] = \begin{cases} \sum_x \sum_y g(x, y) f(x, y) & \text{in the discrete case,} \\ \int_x \int_y g(x, y) f(x, y) dy dx & \text{in the continuous case.} \end{cases} \quad (17)$$

The covariance of  $x$  and  $y$  is a special case:

$$\begin{aligned} \text{Cov}[x, y] &= E[(x - \mu_x)(y - \mu_y)] \\ &= E[xy] - \mu_x \mu_y = \sigma_{xy} \end{aligned}$$

If  $x$  and  $y$  are independent, then  $f(x, y) = f_x(x)f_y(y)$  and

$$\begin{aligned} \sigma_{xy} &= \sum_x \sum_y f_x(x)f_y(y)(x - \mu_x)(y - \mu_y) \\ &= \sum_x (x - \mu_x)f_x(x) \sum_y (y - \mu_y)f_y(y) = E[x - \mu_x]E[y - \mu_y] = 0. \end{aligned}$$

- ▶ correlation  $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$
- ▶  $\sigma_{xy}$  does not imply independence (except for bivariate normal).

# The conditional density function

The **conditional distribution** over  $y$  for each value of  $x$  (and vice versa) has conditional densities

$$f(y|x) = \frac{f(x,y)}{f_x(x)} \quad f(x|y) = \frac{f(x,y)}{f_y(y)}.$$

The marginal distribution of  $x$  averages the probability of  $x$  given  $y$  over the distribution of all values of  $y$   $f_x(x) = E[f(x|y)f(y)]$ . If  $x$  and  $y$  are independent, knowing the value of  $y$  does not provide any information about  $x$ , so  $f_x(x) = f(x|y)$ .

## Example

| cond. distr. |          | joint distr. |              | marginal pr. |
|--------------|----------|--------------|--------------|--------------|
|              | $f(x y)$ | $f(x y = 1)$ | $f(x y = 2)$ | $f_x(x)$     |
| $x = 1$      |          | 1/2          | 1/4          | 3/10         |
| $x = 2$      |          | 1/2          | 1/4          | 3/10         |
| $x = 3$      |          | 0            | 1/2          | 4/10         |
| $\sum_x$     |          | 1            | 1            | 1            |
|              |          |              | $f_y(y)$     |              |
|              |          |              | 2/10         | 8/10         |
|              |          |              |              | 1            |

$$f(x = 3|y = 2) = \frac{f(x = 3, y = 2)}{f_y(y = 2)} = 4/10 \times 10/8 = 1/2.$$

$$f_x(x = 2) = E_y[f(x = 2|y)f(y)] = f(x = 2|y = 1)f(y = 1) + f(x = 2|y = 2)f(y = 2)$$

# Conditional mean aka regression

A random variable may always be written as

$$\begin{aligned} y &= E[y|x] + (y - E[y|x]) \\ &= E[y|x] + \epsilon. \end{aligned}$$

## Definition

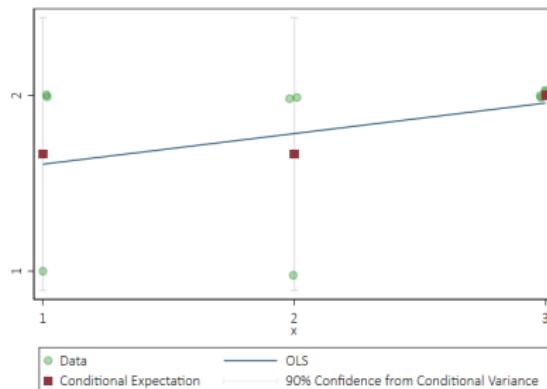
The regression of  $y$  on  $x$  is obtained from the **conditional mean**

$$E[y|x] = \begin{cases} \sum_y yf(y|x) & \text{if } y \text{ is discrete,} \\ \int_y yf(y|x)dy & \text{if } y \text{ is continuous.} \end{cases} \quad (18)$$

# Conditional mean aka regression

Predict  $y$  at values of  $x$ :

$$\sum_y y f(y|x=1) = 1 \times 2/3 + 2 \times 2/3 = 5/3.$$



# Conditional variance

A **conditional variance** is the variance of the conditional distribution:

$$\text{Var}[y|x] = \begin{cases} \sum_y (y - E[y|x])^2 f(y|x) & \text{if } y \text{ is discrete,} \\ \int_y (y - E[y|x])^2 f(y|x) dy, & \text{if } y \text{ is continuous.} \end{cases} \quad (19)$$

The computation can be simplified by using

$$\text{Var}[y|x] = E[y^2|x] - (E[y|x])^2 \geq 0. \quad (20)$$

Decomposition of variance  $\text{Var}[y] = E_x[\text{Var}[y|x]] + \text{Var}_x[E[y|x]]$

- ▶ When we condition on  $x$ , the variance of  $y$  reduces on average.  
 $\text{Var}[y] \geq E_x[\text{Var}[y|x]]$
- ▶  $E_x[\text{Var}[y|x]]$  is the average of variances **within** each  $x$
- ▶  $\text{Var}_x[E[y|x]]$  is variance **between**  $y$  averages in each  $x$ .

# Conditional expectations and variances

- ▶  $E[y|x=1] = 1.67$ ,  $E[y|x=2] = 1.67$ , and  $E[y|x=3] = 2$
- ▶  $V[y|x=1] = 0.22$ ,  $V[y|x=2] = 0.22$ , and  $V[y|x=3] = 0$

## Example

| $f(y x)$   | $y = 1$ | $y = 2$ |   |
|------------|---------|---------|---|
| $f(y x=1)$ | 1/3     | 2/3     | 1 |
| $f(y x=2)$ | 1/3     | 2/3     | 1 |
| $f(y x=3)$ | 0       | 1       | 1 |

$$E[y|x=1] = 1/3 \times 1 + 2/3 \times 2 = 5/3$$

$$E[y|x=2] = 1/3 \times 1 + 2/3 \times 2 = 5/3$$

$$E[y|x=3] = 0 \times 1 + 1 \times 2 = 2$$

| $f(x,y)$    | $f(x, y=1)$ | $f(x, y=2)$ | $f_x(x)$ |
|-------------|-------------|-------------|----------|
| $f(x=1, y)$ | 1/10        | 2/10        | 3/10     |
| $f(x=2, y)$ | 1/10        | 2/10        | 3/10     |
| $f(x=3, y)$ | 0           | 4/10        | 4/10     |
| $f_y(y)$    | 2/10        | 8/10        | 1        |

$$V[y|x=1] = 1^2 \times 1/3 + 2^2 \times 2/3 - (5/3)^2 = 2/9$$

$$V[y|x=2] = 1^2 \times 1/3 + 2^2 \times 2/3 - (5/3)^2 = 2/9$$

$$V[y|x=3] = 1^2 \times 0 + 2^2 \times 1 - 2^2 = 0$$

alternatively (requiring more differences)

$$V[y|x=1] = (1-5/3)^2 \times 1/3 + (2-5/3)^2 \times 2/3 = 2/9$$

# Conditional expectations and variances

Average of variances **within** each  $x$ ,  $E[V[y|x]]$  is less or equal total variance  $E[y]$ .

## Example

- ▶ Use the conditional mean to calculate  $E[y]$ :

$$E[y] = E_x[E[y|x]] = E[y|x=1]f(x=1) + E[y|x=2]f(x=2) + E[y|x=3]f(x=3)$$

$$= 5/3 \times 3/10 + 5/3 \times 3/10 + 2 \times 4/10 = 9/5.$$

$$E[y] = \sum_y f_y(y) = 1 \times 2/10 + 2 \times 8/10 = 9/5.$$

- ▶ Variation in  $y$ ,  $V[y|x=1] = 0.22$ ,  $V[y|x=2] = 0.22$ , and  $V[y|x=3] = 0$  due to variation in  $x$ , is on average

$$E[V[y|x]] = 3/10 \times 2/9 + 3/10 \times 2/9 + 4/10 \times 0 = 2/15.$$

- ▶ For each conditional mean  $E[y|x=1] = 5/3$ ,  $E[y|x=2] = 5/3$ , and  $E[y|x=3] = 2$ ,  $y$  varies with  $V[E[y|x]] = E[(E[y|x])^2] - (E[y|x])^2 = 3/10 \times (5/3)^2 + 3/10 \times (5/3)^2 + 4/10 \times (2)^2 - (9/5)^2 = 2/75$ .

- ▶  $E[V[y|x]] + V[E[y|x]] = V[y] = 2/75 + 2/15 = 4/25$ .

With degree of freedom correction ( $n - 1$ ) (as reported in software):

$$E[V[y|x]] + V[E[y|x]] = V[y] = 2/75/(10 - 1) \times 10 + 2/15/(10 - 1) \times 10 = 8/45.$$

## Properties of the bivariate normal

Recall bivariate normal distribution is the joint distribution of two normally distributed variables. The density is

$$f(x, y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} e^{-1/2[(\epsilon_x^2 + \epsilon_y^2 - 2\rho\epsilon_x\epsilon_y)/(1-\rho^2)]}, \quad (21)$$

where  $\epsilon_x = \frac{x - \mu_x}{\sigma_x}$ , and  $\epsilon_y = \frac{y - \mu_y}{\sigma_y}$ .

The covariance is  $\sigma_{xy} = \rho_{xy}\sigma_x\sigma_y$ , where

- ▶  $-1 < \rho_{xy} < 1$  is the correlation between  $x$  and  $y$
- ▶  $\mu_x, \sigma_x, \mu_y, \sigma_y$  are means and standard deviations of the marginal distributions of  $x$  or  $y$

## Properties of the bivariate normal

If  $x$  and  $y$  are bivariately normally distributed

$$(x, y) \sim N_2[\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho_{xy}]$$

- ▶ the marginal distributions are normal

$$f_x(x) = N[\mu_x, \sigma_x^2]$$

$$f_y(y) = N[\mu_y, \sigma_y^2]$$

- ▶ the conditional distributions are normal

$$f(y|x) = N[\alpha + \beta x, \sigma_y^2(1 - \rho^2)]$$

$$\alpha = \mu_y - \beta \mu_x; \beta = \frac{\sigma_{xy}}{\sigma_x^2}$$

- ▶  $f(x, y) = f_x(x)f_y(y)$  if  $\rho_{xy} = 0$ :  $x$  and  $y$  are independent if and only if they are uncorrelated

## Useful rules

- ▶  $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$
- ▶  $E[ax + by + c] = aE[x] + bE[y] + c$
- ▶  $Var[ax + by + c] = a^2Var[x] + b^2Var[y] + 2abCov[x, y] =$   
 $Var[ax + by]$
- ▶  $Cov[ax+by, cx+dy] = acVar[x]+bdVar[y]+(ad+bc)Cov[x,y]$
- ▶ If  $X$  and  $Y$  are uncorrelated, then  
 $Var[x + y] = Var[x - y] = Var[x] + Var[y].$

# Useful rules

- ▶ Linearity

$$E[ax + by|z] = aE[x|z] + bE[y|z].$$

- ▶ Adam's Law / Law of Iterated Expectation

$$E[y] = E_x[E[y|x]]$$

- ▶ Adam's general Law / Law of Iterated Expectation

$$E[y|g_2(g_1(x))] = E[E[y|g_1(x)]|g_2(g_1(x))]$$

- ▶ Independence

If  $x$  and  $y$  are independent, then

$$E[y] = E[y|x],$$

$$E[g_1(x)g_2(y)] = E[g_1(x)]E[g_2(y)].$$

# Useful rules

- ▶ Taking out what is known

$$E[g_1(x)g_2(y)|x] = g_1(x)E[g_2(y)|x].$$

- ▶ Projection of  $y$  by  $E[y|x]$ , such that orthogonal to  $h(x)$

$$E[(y - E[y|x])h(x)] = 0.$$

- ▶ Keeping just what is needed ( $y$  predictable from  $x$  needed, not residual)

$$E[xy] = E[xE[y|x]].$$

- ▶ Eve's Law (EVVE) / Law of Total Variance

$$\text{Var}[y] = E_x[\text{Var}[y|x]] + \text{Var}_x[E[y|x]]$$

- ▶ ECCE law / Law of Total Covariance

$$\text{Cov}[x, y] = E_z[\text{Cov}[y, x|z]] + \text{Cov}_z[E[x|z], E[y|z]]$$

## Useful rules

- ▶  $\text{Cov}[x, y] = \text{Cov}_x[x, E[y|x]] = \int_x (x - E[x]) E[y|x] f_x(x) dx.$
- ▶ If  $E[y|x] = \alpha + \beta x$ , then  $\alpha = E[y] - \beta E[x]$  and  $\beta = \frac{\text{Cov}[x, y]}{\text{Var}[x]}$
- ▶ Regression variance  $\text{Var}_x[E[y|x]]$ , because  $E[y|x]$  varies with  $x$
- ▶ Residual variance  $E_x[\text{Var}[y|x]] = \text{Var}[y] - \text{Var}_x[E[y|x]]$ , because  $y$  varies around the conditional mean
- ▶ Decomposition of variance

$$\text{Var}[y] = \text{Var}_x[E[y|x]] + E_x[\text{Var}[y|x]]$$

- ▶ Coefficient of determination = 
$$\frac{\text{regression variance}}{\text{total variance}}$$
- ▶ If  $E[y|x] = \alpha + \beta x$  and if  $\text{Var}[y|x]$  is a constant, then

$$\text{Var}[y|x] = \text{Var}[y] (1 - \text{Corr}^2[y, x]) = \sigma_y^2 (1 - \sigma_{xy}^2)$$

## The joint multivariate distribution

For three or more random variables, the joint pdf and joint cdf are defined in a similar way to what we have already seen for the case of two random variables.

- ▶ For discrete variables  $X_1, X_2, \dots, X_n$ , the joint probability mass function is

$$P_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = P_{X_1=x_1, X_2=x_2, \dots, X_n=x_n}.$$

- ▶ The joint density in the continuous case is

$$f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n).$$

# Cumulative and marginal distributions

- We can integrate the pdf over a set  $A$  to obtain the probability set  $A$

$$P[(X_1, X_2, \dots, X_n) \in A] = \int_A \dots \int_A f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n.$$

- The cdf of  $x_i$  can be obtained by integrating all other  $x_j$ 's. For example,

$$\begin{aligned} F_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) &= P_{X_1 \leq x_1, X_2 \leq x_2, \dots, X_n \leq x_n} \\ &= \int_{-\infty}^{x_n} \int_{-\infty}^{x_{n-1}} \dots \int_{-\infty}^{x_1} f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n \end{aligned}$$

- The marginal pdf of  $x_i$  can be obtained by integrating all other  $x_j$ 's.

For example,

$$f_{X_1} = \int_{-\infty}^{x_n \rightarrow \infty} \dots \int_{-\infty}^{x_2 \rightarrow \infty} f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) dx_2 \dots dx_n.$$

# Integrating out

$c = 1/3$  for the three continuous random variables  $X, Y, Z$  with joint pdf

$$f_{XYZ} = c(x + 2y + 3z) \text{ for } 0 \leq x, y, z \leq 1$$

and zero otherwise.

## Example

$$F_{XYZ} = 1 = \int_{-\infty}^{z \rightarrow \infty} \int_{-\infty}^{y \rightarrow \infty} \int_{-\infty}^{x \rightarrow \infty} f_{X,Y,Z}(x, y, z) dx dy dz$$

$$= \int_0^1 \int_0^1 \int_0^1 c(x + 2y + 3z) dx dy dz.$$

$$\int_0^1 x dx = \frac{x^2}{2} \Big|_0^1 = \frac{1}{2} - \frac{0}{2} = \frac{1}{2}.$$

$$F_{XYZ} = 1 = \int_0^1 \int_0^1 c(1/2 + 2y + 3z) dy dz.$$

$$\int_0^1 y dy = 2 \frac{y^2}{2} \Big|_0^1 = \frac{2}{2} - 2 \frac{0}{2} = 1.$$

$$F_{XYZ} = 1 = \int_0^1 c(3/2 + 3z) dz.$$

$$\int_0^1 z dz = 3 \frac{z^2}{2} \Big|_0^1 = \frac{3}{2} - 3 \frac{0}{2} = 3/2.$$

$$F_{XYZ} = 1 = 3c$$

$$c = 1/3.$$

# Marginal pdf

$f_X(x) = 1/3(x + 5/2)$  for  $0 \leq x \leq 1$  and zero otherwise if the three continuous random variables  $X, Y, Z$  are distributed with joint pdf

$$f_{XYZ} = c(x + 2y + 3z) \text{ for } 0 \leq x, y, z \leq 1$$

and zero otherwise.

## Example

$$f_X = \int_{-\infty}^{z \rightarrow \infty} \int_{-\infty}^{y \rightarrow \infty} f_{X,Y,Z}(x, y, z) dy dz$$

$$= \int_0^1 \int_0^1 c(x + 2y + 3z) dy dz.$$

$$= \int_0^1 c(x + 1 + 3z) dz.$$

$$= c(x + 5/2)$$

$$f_X(x) = 1/3(x + 5/2) \text{ for } 0 \leq x \leq 1 \text{ else } 0.$$

$$\int_0^1 y dy = 2 \frac{y^2}{2} \Big|_0^1 = \frac{2}{2} - 2 \frac{0}{2} = 1.$$

$$\int_0^1 z dz = 3 \frac{z^2}{2} \Big|_0^1 = \frac{3}{2} - 3 \frac{0}{2} = 3/2.$$

# Independence and identical distribution

Analysis is simplified in the case of **independent** random variables. If variables also have the same cdfs, they are **identically distributed**.

With independence:

- ▶  $P_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = P_{X_1}(x_1)P_{X_2}(x_2) \dots P_{X_n}(x_n)$
- ▶  $F_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = F_{X_1}(x_1)F_{X_2}(x_2) \dots F_{X_n}(x_n)$
- ▶  $f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) = f_{X_1}(x_1)f_{X_2}(x_2) \dots f_{X_n}(x_n)$
- ▶  $E[X_1, X_2, \dots, X_n] = E[X_1]E[X_2] \dots E[X_n]$

If they are **independent and identically distributed (i.i.d.)**

- ▶ same marginal distribution  $F_{X_1}(x) = F_{X_2}(x) \dots F_{X_n}(x)$
- ▶ same means  $E[X_1, X_2, \dots, X_n] = E[X_1]E[X_2] \dots E[X_n] = E[X_1]E[X_1] \dots E[X_1] = E[X_1]^n$ .

## 2.8 Random Vectors & the Multivariate Normal

---

## Random vectors and moments

For more than two random variables, matrix notation is useful, because this makes the formulas more compact and lets us use facts from linear algebra.

In a **random vector** elements are random variables. The mean vector is

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} E[x_1] \\ E[x_2] \\ \vdots \\ E[x_n] \end{bmatrix} = E[\mathbf{x}]$$

# Random vectors and moments

The squared-deviations from the mean matrix is

$$(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})' = \begin{bmatrix} (x_1 - \mu_1)(x_1 - \mu_1) & (x_1 - \mu_1)(x_2 - \mu_2) & \cdots & (x_1 - \mu_1)(x_n - \mu_n) \\ (x_2 - \mu_2)(x_1 - \mu_1) & (x_2 - \mu_2)(x_2 - \mu_2) & \cdots & (x_2 - \mu_2)(x_n - \mu_n) \\ \vdots & \vdots & \vdots & \vdots \\ (x_n - \mu_n)(x_1 - \mu_1) & (x_n - \mu_n)(x_2 - \mu_2) & \cdots & (x_n - \mu_n)(x_n - \mu_n) \end{bmatrix}.$$

The expected value of each element in the matrix is the covariance of the two variables in the product.

The **variance-covariance matrix** of the random vector  $\mathbf{x}$  is

$$\text{Var}[\mathbf{x}] = \boldsymbol{\Sigma} = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})'] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix} = E[\mathbf{x}\mathbf{x}'] - \boldsymbol{\mu}\boldsymbol{\mu}'.$$

## Random vectors and moments

By dividing  $\sigma_{ij}$  by  $\sigma_i \sigma_j$ , we obtain the correlation matrix

$$R = \begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \cdots & \rho_{1n} \\ \rho_{21} & 1 & \rho_{23} & \cdots & \rho_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \rho_{n1} & \rho_{n2} & \rho_{n3} & \cdots & 1 \end{bmatrix}.$$

## Properties of the covariance matrix

$\Sigma$  is a symmetric matrix because  $\sigma_{ij} = \sigma_{ji}$ .

- ▶ symmetric matrices can be diagonalized
- ▶ all the eigenvalues are real.

Covariance matrices are always positive semi-definite

- ▶ If  $\mathbf{y} = \mathbf{a}'(\mathbf{x} - \boldsymbol{\mu})$ ,  $E[\mathbf{y}\mathbf{y}'] = \mathbf{a}'E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})']\mathbf{a} = \mathbf{a}'\Sigma\mathbf{a} \geq 0$ ,  
 $\Sigma$  is positive semi-definite.
- ▶ If and only if  $\det[\Sigma] > 0$ , implying that all eigenvalues are  
larger than zero,  $\Sigma$  is positive definite.

# Linearity of expectations

What if we weight the random variables with a vector of constants,  $\mathbf{a}$ ?

$$\begin{aligned} E[a_1x_1 + a_2x_2 + \cdots + a_nx_n] &= E[\mathbf{a}'\mathbf{x}] \\ &= a_1E[x_1] + a_2E[x_2] + \cdots + a_nE[x_n] \\ &= a_1\mu_1 + a_2\mu_2 + \cdots + a_n\mu_n \\ &= \mathbf{a}'\boldsymbol{\mu}. \end{aligned}$$

For the variance,

$$\begin{aligned} \text{Var}[\mathbf{a}'\mathbf{x}] &= E[(\mathbf{a}'\mathbf{x} - E[\mathbf{a}'\mathbf{x}])^2] \\ &= E[\mathbf{a}'(\mathbf{x} - E[\mathbf{x}])^2] \\ &= E[\mathbf{a}'(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})'\mathbf{a}] \end{aligned}$$

as  $E[\mathbf{x}] = \boldsymbol{\mu}$  and  $\mathbf{a}'(\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})'\mathbf{a}$ .

Because  $\mathbf{a}$  is a vector of constants,

$$\text{Var}[\mathbf{a}'\mathbf{x}] = \mathbf{a}'E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})']\mathbf{a} = \mathbf{a}'\Sigma\mathbf{a} = \sum_{i=1}^n \sum_{j=1}^n a_i a_j \sigma_{ij} \geq 0.$$

# Linearity in a system of equations

We can transform random vector  $\mathbf{x}$  linearly to  $\mathbf{y}$  using

$$\mathbf{y}_{m \times 1} = \mathbf{A}_{m \times kk \times 1} \mathbf{x} + \mathbf{b}_{m \times 1}.$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mk} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Then linearity of expectation

$$E[\mathbf{y}] = \mathbf{A}E[\mathbf{x}] + \mathbf{b}.$$

# Linearity in a system of equations

We can transform the covariance matrix of a random vector  $\mathbf{x}$  linearly using  $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$  to

$$\text{Var}[\mathbf{A}'\mathbf{x}] = \mathbf{A}'\Sigma\mathbf{A}.$$

## Example

By linearity of expectation

$$E[\mathbf{y}] = \mathbf{A}E[\mathbf{x}] + \mathbf{b}.$$

$$\begin{aligned}\text{Var}[\mathbf{A}'\mathbf{x}] &= E[(\mathbf{y} - E[\mathbf{y}])(\mathbf{y} - E[\mathbf{y}])'] \\ &= E[(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{A}E[\mathbf{x}] - \mathbf{b})(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{A}E[\mathbf{x}] - \mathbf{b})'] \\ &= E[\mathbf{A}(\mathbf{x} - E[\mathbf{x}])(\mathbf{x} - E[\mathbf{x}])'\mathbf{A}'] \\ &= \mathbf{A}E[(\mathbf{x} - E[\mathbf{x}])(\mathbf{x} - E[\mathbf{x}])']\mathbf{A}' \\ &= \mathbf{A}'\Sigma\mathbf{A}.\end{aligned}$$

# The method of transformations

We can transform the pdf  $f(\mathbf{x})$  of a random vector  $\mathbf{x}$  linearly using  $\mathbf{y} = \mathbf{A}_{m \times mm \times 1} \mathbf{x} + \mathbf{b}$  with to  $f(\mathbf{y})$ .

## Example

$$\mathbf{x} = \mathbf{A}^{-1}(\mathbf{y} - \mathbf{b}).$$

$$\mathbf{J} = \det(\mathbf{A}^{-1})$$

$$f(\mathbf{y}) = \frac{1}{|\det(\mathbf{A})|} f(\mathbf{A}^{-1}(\mathbf{y} - \mathbf{b})).$$

# The method of transformations

We can transform  $f(\mathbf{y}) = f(\mathbf{B}(\mathbf{y}))|\mathbf{J}|$  with  $\mathbf{y} = \mathbf{G}(\mathbf{x})$ ,  $\mathbf{B} = \mathbf{G}^{-1}$  and Jacobian

$$\mathbf{J} = \det \begin{bmatrix} \frac{\partial h_1}{\partial y_1} & \frac{\partial h_1}{\partial y_2} & \cdots & \frac{\partial h_1}{\partial y_m} \\ \frac{\partial h_2}{\partial y_1} & \frac{\partial h_2}{\partial y_2} & \cdots & \frac{\partial h_2}{\partial y_m} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial h_m}{\partial y_1} & \frac{\partial h_m}{\partial y_2} & \cdots & \frac{\partial h_m}{\partial y_m} \end{bmatrix}.$$

# The method of transformations

Approximate each element of the linear or nonlinear functions  $y = g(x)$  with a Taylor series. Let  $\mathbf{j}^i$  be the row vector of partial derivatives of the  $i$ th function with respect to the  $n$  elements of  $\mathbf{x}$ :

$$\mathbf{j}^i(\mathbf{x}) = \frac{\partial g_i(\mathbf{x})}{\partial \mathbf{x}'} = \frac{\partial \mathbf{y}_i}{\partial \mathbf{x}'} \quad (22)$$

We use  $\mu$  as the expansion point. Then

$$g_i(\mathbf{x}) \approx g_i(\mu) + \mathbf{j}^i(\mu)(\mathbf{x} - \mu). \quad (23)$$

From this we obtain

$$E[g_i(\mathbf{x})] \approx g_i(\mu),$$

$$Var[g_i(\mathbf{x})] \approx \mathbf{j}^i(\mu) \Sigma \mathbf{j}^i(\mu)',$$

and

$$Cov[g_i(\mathbf{x}), g_j(\mathbf{x})] \approx \mathbf{j}^i(\mu) \Sigma \mathbf{j}^j(\mu)'. \quad (24)$$

# The method of transformations

Arranging the row vectors  $\mathbf{j}^i(\mu)$  in a matrix  $\mathbf{J}(\mu)$ . Then,

$$E[g(\mathbf{x})] \simeq g(\mu) \quad (25)$$

$$Var[g(\mathbf{x})] \simeq \mathbf{J}(\mu) \Sigma \mathbf{J}(\mu)' \quad (26)$$

# Useful rules

- ▶  $E[\mathbf{A}'\mathbf{x}] = \mathbf{A}'\boldsymbol{\mu}$
- ▶  $Var[\mathbf{A}'\mathbf{x}] = \mathbf{A}'\boldsymbol{\Sigma}\mathbf{A} \geq 0$  is a non-negative definite aka positive semi-definite quadratic form  
it is positive definite if  $\mathbf{A}$  has full column rank, i.e.  
 $\det(\mathbf{A}) = \lambda_1\lambda_2 \dots \lambda_n > 0$ .
- ▶  $\boldsymbol{\Sigma} = \mathbf{R} - E[\mathbf{x}]E[\mathbf{x}]'$
- ▶  $Cov(\mathbf{x}, \mathbf{y}) = E[(\mathbf{x} - E[\mathbf{x}])E[(\mathbf{y} - E[\mathbf{y}])]'$
- ▶  $f(\mathbf{y}) = f(\mathbf{B}(\mathbf{y}))|\mathbf{J}|$  with  $\mathbf{y} = \mathbf{G}(\mathbf{x})$ ,  $\mathbf{B} = \mathbf{G}^{-1}$  and Jacobian  $\mathbf{J}$ .

# The multivariate normal distribution

Let the vector  $(x_1, x_2, \dots, x_n) = \mathbf{x}$  be the set of  $n$  random variables,  $\mu$  their mean vector, and  $\Sigma$  their covariance matrix. The general form of the joint density is

$$f(\mathbf{x}) = (2\pi)^{-n/2} |\Sigma|^{-1/2} e^{(-1/2)(\mathbf{x}-\mu)' \Sigma^{-1} (\mathbf{x}-\mu)}. \quad (27)$$

If  $\mathbf{R}$  is the correlation matrix of the variables,  $R_{ij} = \sigma_{ij}/(\sigma_i \sigma_j)$  and  $\Delta_i^{-1}(\mathbf{x} - \mu) = (x_i - \mu_i)/\sigma_i$ , then

$$\mathbf{R} = \Delta^{-1} \Sigma \Delta^{-1}$$

$$\Sigma^{-1} = \Delta^{-1} \mathbf{R}^{-1} \Delta^{-1}$$

$$f(\mathbf{x}) = (2\pi)^{-n/2} (\sigma_1 \sigma_2 \dots \sigma_n)^{-1} |\mathbf{R}|^{-1/2} e^{(-1/2) \epsilon' \mathbf{R}^{-1} \epsilon}, \quad (28)$$

where  $\epsilon_i = (x_i - \mu_i)/\sigma_i$ .

# The multivariate normal distribution

If all variables are uncorrelated  $\rho_{ij} = 0$  and  $\mathbf{R} = \mathbf{I}$ , then the density becomes

$$f(\mathbf{x}) = (2\pi)^{-n/2}(\sigma_1\sigma_2 \dots \sigma_n)^{-1} e^{-\epsilon'\epsilon/2}. \quad (29)$$

$$f(\mathbf{x}) = f(x_1)f(x_2) \dots f(x_n) = \prod_{i=1}^n f(x_i). \quad (30)$$

If  $\sigma_i = \sigma$  and  $\mu = 0$ , then  $x_i \sim N[0, \sigma^2]$  and  $\epsilon_i = x_i/\sigma$ , and the density becomes the **multivariate standard normal** or spherical normal distribution

$$f(\mathbf{x}) = (2\pi)^{-n/2}(\sigma^2)^{-n/2} e^{-\mathbf{x}'\mathbf{x}/(2\sigma^2)}. \quad (31)$$

Finally, if  $\sigma = 1$ ,

$$f(\mathbf{x}) = (2\pi)^{-n/2} e^{-\mathbf{x}'\mathbf{x}/2}. \quad (32)$$

# The marginal normal distributions

Let  $x_1$  be any subset of the variables, including a single variable, and let  $x_2$  be the remaining variables. Partition  $\mu$  and  $\Sigma$  likewise so that

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

and

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}.$$

## Theorem (Marginal and Conditional Normal Distributions)

*If  $[\mu_1, \mu_2]$  have a joint multivariate normal distribution, then the marginal distributions are*

$$\mu_1 \sim N(\mu_1, \Sigma_{11}) \quad \mu_2 \sim N(\mu_2, \Sigma_{22}). \quad (33)$$

# The conditional normal distributions

## Theorem

*The conditional distribution of  $\mathbf{x}_1$  given  $\mathbf{x}_2$  is normal as well:*

$$\mathbf{x}_1 | \mathbf{x}_2 \sim N(\boldsymbol{\mu}_{1.2}, \boldsymbol{\Sigma}_{11.2}), \quad (34)$$

where

$$\boldsymbol{\mu}_{1.2} = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{x}_2 - \boldsymbol{\mu}_2),$$

$$\boldsymbol{\Sigma}_{11.2} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}.$$

## How do marginal, conditional and joint density relate?

$$f(\mathbf{x}_1, \mathbf{x}_2) = f_{1.2}(\mathbf{x}_1 | \mathbf{x}_2) f_2(\mathbf{x}_2).$$

Multiplying the marginal distribution of  $\mathbf{x}_2$  and the distribution of  $\mathbf{x}_1$  conditional on  $\mathbf{x}_2$  gives the joint density.

## Properties of the normal

- ▶ Any linear function of a vector of joint normally distributed variables is also normally distributed. If  $\mathbf{x} \sim N[\boldsymbol{\mu}, \boldsymbol{\Sigma}]$ , then

$$\mathbf{Ax} + \mathbf{b} \sim N[\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}'].$$

- ▶ For normal random vector  $\mathbf{x}$ , if  $\text{Cov}(x_i, x_j) = 0$ , then  $x_i$  and  $x_j$  are independent.
- ▶ If  $\mathbf{x} \sim N[\mathbf{0}, \mathbf{I}]$  and  $\mathbf{C}$  is a square matrix such that  $\mathbf{C}'\mathbf{C} = \mathbf{I}$ , then  $\mathbf{C}'\mathbf{x} \sim N[\mathbf{0}, \mathbf{I}]$ .
- ▶ Distribution of quadratic form in standard normal  
If  $\mathbf{x} \sim N[\mathbf{0}, \mathbf{I}]$  and  $\mathbf{A}$  is idempotent, then  $\mathbf{x}'\mathbf{Ax}$  has a  $\chi^2$  distribution with degrees of freedom equal to the number of unit roots of  $\mathbf{A}$ , which is equal to the rank of  $\mathbf{A}$ .

# Properties of the normal

- ▶ Independence of idempotent quadratic forms

If  $\mathbf{x} \sim N[\mathbf{0}, \mathbf{I}]$  and  $\mathbf{x}'\mathbf{A}\mathbf{x}$  and  $\mathbf{x}'\mathbf{B}\mathbf{x}$  are two idempotent quadratic forms in  $\mathbf{x}$ , then  $\mathbf{x}'\mathbf{A}\mathbf{x}$  and  $\mathbf{x}'\mathbf{B}\mathbf{x}$  are independent if  $\mathbf{A}\mathbf{B} = \mathbf{0}$ .

- ▶ Independence of a linear and a quadratic form

A linear function  $\mathbf{L}\mathbf{x}$  and a symmetric idempotent quadratic form  $\mathbf{x}'\mathbf{A}\mathbf{x}$  in a standard normal vector are statistically independent if  $\mathbf{L}\mathbf{A} = \mathbf{0}$ .

- ▶ Distribution of a Standardized Normal Vector

If  $\mathbf{x} \sim N[\boldsymbol{\mu}, \boldsymbol{\Sigma}]$ , then  $\boldsymbol{\Sigma}^{-1/2}(\mathbf{x} - \boldsymbol{\mu}) \sim N[\mathbf{0}, \mathbf{I}]$ .

- ▶ If  $\mathbf{x} \sim N[\boldsymbol{\mu}, \boldsymbol{\Sigma}]$ , then  $(\mathbf{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) \sim \chi^2[n]$ .

# The classical normal linear regression model

## Definition

Recall that any random variable  $y$ , can be written as its mean plus the deviation from the mean. If we apply this tautology to the multivariate normal, we obtain

$$y = E[y|\mathbf{x}] + (y - E[y|\mathbf{x}]) = \alpha + \beta' \mathbf{x} + \varepsilon,$$

where  $\beta = \Sigma_{\mathbf{xx}}^{-1} \sigma_{\mathbf{xy}}$  is given earlier,  $\alpha = \mu_y - \beta' \mu_{\mathbf{x}}$ , and  $\varepsilon$  has a normal distribution. We thus have, in this multivariate normal distribution, the **classical normal linear regression model**.

# References I

## Transformation of bivariate random variables

Suppose that  $x_1$  and  $x_2$  have a joint distribution  $f_x(x_1, x_2)$  and that  $y_1$  and  $y_2$  are two monotonic functions of  $x_1$  and  $x_2$ :

$$\begin{aligned}y_1 &= y_1(x_1, x_2), \\y_2 &= y_2(x_1, x_2).\end{aligned}$$

Because the functions are monotonic, the inverse transformations,

$$\begin{aligned}x_1 &= x_1(y_1, y_2), \\x_2 &= x_2(y_1, y_2),\end{aligned}$$

exist. The Jacobian of the transformations is the matrix of partial derivatives,

$$\mathbf{J} = \begin{bmatrix} \partial x_1 / \partial y_1 & \partial x_1 / \partial y_2 \\ \partial x_2 / \partial y_1 & \partial x_2 / \partial y_2 \end{bmatrix} = \begin{bmatrix} \partial \mathbf{x} / \partial \mathbf{y}' \end{bmatrix}.$$

The joint distribution of  $y_1$  and  $y_2$  is

$$f_y(y_1, y_2) = f_x[x_1(y_1, y_2), x_2(y_1, y_2)] \text{abs}(|\mathbf{J}|).$$

## Linear transformation of $x_i$

Suppose that  $x_1$  and  $x_2$  are independently distributed  $N[0, 1]$ , and the transformations are

$$\begin{aligned}y_1 &= \alpha_1 + \beta_{11}x_1 + \beta_{12}x_2, \\y_2 &= \alpha_2 + \beta_{21}x_1 + \beta_{22}x_2.\end{aligned}$$

To obtain the joint distribution of  $y_1$  and  $y_2$ , we first write the transformations as

$$\mathbf{y} = \mathbf{a} + \mathbf{B}\mathbf{x}.$$

The inverse transformation is

$$\mathbf{x} = \mathbf{B}^{-1}(\mathbf{y} - \mathbf{a}),$$

so the absolute value of the determinant of the Jacobian is

$$abs|\mathbf{J}| = abs|\mathbf{B}^{-1}| = \frac{1}{abs|\mathbf{B}|}.$$

The joint distribution of  $\mathbf{x}$  is the product of the marginal distributions since they are independent.

$$f_x(\mathbf{x}) = (2\pi)^{-1} e^{-(x_1^2 + x_2^2)/2} = (2\pi)^{-1} e^{-\mathbf{x}'\mathbf{x}/2}.$$

Inserting the results for  $\mathbf{x}(\mathbf{y})$  and  $\mathbf{J}$  into  $f_y(y_1, y_2)$  gives

$$f_y(\mathbf{y}) = (2\pi)^{-1} \frac{1}{abs|\mathbf{B}|} e^{-(\mathbf{y}-\mathbf{a})'(\mathbf{B}\mathbf{B}')^{-1}(\mathbf{y}-\mathbf{a})/2}.$$

Find  $y_1(x_1, x_2)$  from

- ▶ form the joint distribution of the transformed variable  $y_1(x_1, x_2)$  and one of the original variables  $y_2 = x_2$
- ▶ integrate (or sum)  $y_2$  of the joint distribution to obtain the marginal distribution  $f_{y_1}(y_1)$

To find the distribution of  $y_1(x_1, x_2)$ , we might formulate

$$\begin{aligned} y_1 &= y_1(x_1, x_2) \\ y_2 &= x_2. \end{aligned}$$

The absolute value of the determinant of the Jacobian would then be

$$J = \text{abs} \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ 0 & 1 \end{vmatrix} = \text{abs} \left| \begin{pmatrix} \frac{\partial x_1}{\partial y_1} \\ 0 \end{pmatrix} \right|.$$

The density of  $y_1$  would then be

$$f_{y_1}(y_1) = \int_{y_2} f_x[x_1(y_1, y_2), y_2] \text{abs}|J| dy_2.$$