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2.1 Random Variables & Probability




Discrete and continuous random variables

» Arandom variable X is
discrete if the set of
outcomes x is either finite
or countably infinite.

» The random variable X is
continuous if the set of
outcomes x is infinitely
divisible and, hence, not
countable.
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Discrete probabilities

For values x of a discrete random variable X,
the probability mass function (pmf)

f(x) = Prob(X = x).
The axioms of probability require

0 <Prob(X =x) <1,

> fx)=1.
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Discrete cumulative probabilities

For values x of a discrete random variable X,
the cumulative distribution function

= f(x) = Prob(X < x),

X<x

where
f(X,‘) = F(X,') — F(X,‘,l).

Example

Roll of a six-sided die

f(x) F(X < x)
f(1)y=1/6 FX<1)=1/6
f(2)=1/6 F(X<2)=2/6
f(3)=1/6 F(X<3)=3/6

)=

)

) =

f(4) =1/6 F(X<4)=4/6
f(5) =1/6 F(X<5)=5/6
f(6) =1/6 F(X <6)=6/6

oo hwWN=| X

What's the probability that you roll a 5 or higher?

FX>5)=1-F(X<4)=1-2/3=1/3. s



Continuous probabilities

For values x of a continuous random variable X, the probability
is zero but the area under f(x) > 0 in the range formato b is
the probability density function (pdf)

b
Prob(a < x < b) =Prob(a <x <b) = / f(x)dx > 0.
a

The axioms of probability require
+oo
/ f(x)dx = 1.

f(x) = 0 outside the range of x.
The cumulative distribution function (cdf) is
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Cumulative distribution function

For continuous and discrete variables, F(x) satisfies
Properties of cdf

» 0<F(x)<1

> If x >y, then F(x) > F(y)
» F(+o0) =1

» F(—o0)=0

and
Prob(a < x < b) = F(b) — F(a).
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Symmetric distributions

For symmetric distributions
F(i—x) = f(u+ )

and
Flu+x)=1- Eli_r)er(—(u +Xx+¢€).
With p =0
f(—x) = f(x)
and

F(x) =1 —F(—x) 4+ Pr(—x).

In the continuous case
F(x) =1 — F(—x).
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2.2 Expectations, Variance & Inequalities




Mean of a random variable

The mean, or expected value, of a discrete random variable is

b= Eix) = 3" xf(x) m

Roll of a six-sided die

X fx)=1/n FX<x)=(x—a+1)/n
a=1 f(1)=1/6 FX<1)=1/6
2 f2)=1/6 F(X<2)=2/6
3 f(3)=1/6 FX<3)=3/6
4 f(4)=1/6 F(X<4)=4/6
5 f(5) =1/6 F(X<5)=5/6
b=6 f(6)=1/6 FX<6)=6/6

What's the expected value from rolling the dice?

Ex] =1/6+2/6 +3/6 +4/6 +5/6 + 6/6 = 3.5.

This is the mean (and the median) of a uniform distribution
(n+1)/2=(a+b)/2=35.
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Variance of a random variable
The variance of a random variable o2 > 0 is
> (x— pw)?f(x) ifxis discrete,

0% = Var[x] = E[(x — u)?] = * 2
/ (x — 1) 2f(x)dx if x is continuous.

Example

Roll of a six-sided die. What's the variance V[x] from rolling the dice?
The probability of observing x, Pr(X = x) = 1/n, is discretely uniformly distributed

n n+1)2
EX] = x)2:( . iy
+1)(2n+1)
ExX’ =S PriX= X2 nidueto the seq. sum of squares.
x?] XX: ( Z . q q

Vx| = Ep] — (El)>.

(h+1@n+1) (n+1)> _ n*-1
6

V[x] = = = (62 —1)/12 ~ 2.92.
[x] i T ( )/
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Chebychev inequality

For any random variable x and any positive constant k,

P(u—ko <x<pu+ko) > kiQ
Share outside k standard deviations.
If x is normally distributed, the bound is 1 — (2®(k) — 1).

1.96 4.47

Share of values drawn outside k
standard deviations away from the mean

0.05

—— Chebyshev inequality: any distribution
=== Normal distribution

95% of the observations are within 1.96 standard deviations for normally
distributed x. If x is not normal, 95% are at most within 4.47 standard

deviations.
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Normal coverage

03 04

0.2

34.1% 34.1%)

0.0 0.1
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Central moments of a random variable

The central moments are

e = E[(x - 1))

Example

Moments. Two measures often used to describe a probability
distribution are

> expectation = E[(x — 1)!]
» variance = E[(x — p)?]

> skewness = E[(x — u)]
> kurtosis = E[(x — 11)"]

The skewness is zero for symmetric distributions.
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Higher order moments

(c) Skewness = —0.1, kurtosis = (d) Skewness = 0.6, kurtosis = 5
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2.3 Moment Generating Functions




Moment generating function

For the random variable X, with probability density function f(x), if the
function
M(t) = E[e¥].
exists, then it is the moment generating function(MGF). t is the
integration variable of a Laplace-Stieltjes transformation
M(t) = L(-1).
» Often simpler alternative to working directly with probability
density functions or cumulative distribution functions

» Not all random variables have moment-generating functions

The nth moment is the nth derivative of the moment-generating
function, evaluated att = 0.

Example

The MGF for the standard normal distribution with x = 0,0 = 1 is
My(t) = ent+o°0/2 _ gf/2,

If x and y are independent, then the MGF of x + y is My (t)M,(t).
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Moment generating function

For x ~ N(u,o?) for some u, o > 0 with moment generating function
1 . . .
M,/ (t) = exp(ut + §azt2), the first moment generating function of x is

El(x — )'] = My () = (s + o) exp (uf " ;cr?tﬁ).

E[(x — )] = My (t) = d[exp (“:L %“29)}

d [,ut + 5021‘2} d {exp (,ut + %JQtQ)]
dt

1
d(ut + 5021‘2)

1
= (1 + o?t) exp (ut + 5021‘2).
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Moment generating function

If x ~ N(0,1),
> the skewness is E[(x — 1)®] = 0 and
> the kurtosis is E[(x — u)*] = 3.

1
El(x—p)'] = My/(t) = (u+o°t) exp (ut+§a2t2) withpy =0,0 =1,t=0:Ex] = pu =0

E[(x — 1)%] = My (t) = (02 +(p+ 02t)2) exp (ut + 10%2)
withpy=0,0=1,t=0: E[(x — ) =02 =1
E[(x — w)®] = M (t) = (302(M +02t) + (u+ ot)3 ) exp (,u + 02t2)
with p = 0,0 =1,t=0: E[(x — )] = 0
El(x — m)*] = Mc® (1) = (304 + 602 (u+ o?t)% + (u + a2t)4) exp (ut 4 %aztz)

with p = 0,0 = 1,t =0 : E[(x — p)*] = 3.
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2.4 Approximations & Jensen




Approximating mean and variance

For any two functions g; (x) and g2(x),

E[g1(x) + g2(x)] = E[g1(X)] + E[g2(x)]. 3)

For the general case of a possibly nonlinear g(x),

Elg(x)] = / g(X)F(x)dx, ()

and

Var(g(x)] Z/(Q(X)—E[Q(X)]ff(x)dx' ()

X

Elg(x)] and Var[g(x)] can be approximated by a first order linear
Taylor series:

g(x) = [g(x") — g' ("X’ + g’ (x")x. (6)
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Taylor approximation Order 1

[g(x%) — &' (x")x"] + &' (x®)x

1+

g(x)

15 10 05 0 05 10 5%

-1t

2k DJ:= 1
3L
g(x)
4l
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Taylor approximation Order 1

15 10 05 0 05 10 15

2k DJ:= 1

—al

19/109



Taylor approximation Order 2

15 19 05 0 05 10 15

2k DJ==.2

—al
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Taylor approximation Order 3

15 10 05 0 05 10 15

2k DJ==:3

4l
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Taylor approximation Order 4

15 10 05 15 05 10 15

2] N=4

4l
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Taylor approximation Order 5

15 19 05 0 05 10 15

2k PJ:: 5

—al
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Taylor approximation Order 6

15 10 05 0 05 10 s

2k Pq:==(5

4l
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Taylor approximation Order 7

-15 =y 05 _—0p 05 10 15

-2}

—al
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Taylor approximation Order 8

15 10 05 0 05 10 "5

-2} N=8

—al
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Taylor approximation Order 9

15 10 05 0 05 10 15

2L PJ ==59

—al
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Taylor approximation Order 10

15 10 05 0 05 10 15

2} N=10

—al
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Taylor approximation Order 15

15 19 05 0 05 10 15

=
I

f—t

N

-2}

—al
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Taylor approximation Order 20

15 10 05 0 05 10 15

2} N=20

4l
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Taylor approximation Order 45

15 10 05 0 05 10 15

2} N=45

4l
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Taylor approximation Order 100

2 .
1_
15 10 05 0 05 9 15
_1 L
5l N=100
-3k
4l

32/109



Approximating mean and variance

A natural choice for the expansion point is x* = p = E(x).
Inserting this value in Eq. (6) gives

g(x) = [g(p) — g (m)u] + g' ()X, @)
so that
Elg(x)] ~ g(u), (8)
and
Var(g(x)] ~ [g'(1)]*Var]x]. 9)

Isoelastic utility. c,5y = 10.00 Euro; c4004 = 100.00 Euro; probability good outcome
50%

p = E[c] = 1/2 X Cpag + 1/2 X Cgoog =55.00 Euro
u(c) = ct/?
u(w) = 7.42 approximates E[u(c)] = 1/2 x 10/2 +1/2 x 100'/2 = 6.58
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Approximating mean and variance

Isoelastic utility. Cpog = 10.00 Euro; ¢go0¢ = 100.00 Euro; probability good
outcome 50%; 1 = 55.00 Euro

u(c) = In(c)

u(p) = 4.01 approx.
Efu(c)] = 1/2x1n(10)+1/2 xIn(100) = 3.45

Jensen's
inequality: E[g(x)] < g(E[x])] if g” (x) < 0.

V{u(c)] =~ (1/55)%((10 — 55)* + (100 — 55)%) = 1.34
V{u(c)] = (In(10) — E[u(c)])® + (In(100) — E[u(c)])® = 2.65
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Useful rules

vV v v v Y

vV v.v v

Var[x] = E[x*] — p?

EX? = o2 + ;2

If a and b constants, Var[a + bx] = b*Var[x]
Var[a] = 0

If g(x) = a + bx and a and b are constants,

Ela + bx] = a + bE[X]
Coverage P(|X — u| > ko) < k_12

Skewness = E[(x — u)®]

Kurtosis = E[(x — u)*]

For symmetric distributions f(u — x) = f(u + X);
1—F(x) =F(—x)

E[g(x)] ~ g(n) 35/109



2.5 Core Distributions




Specific Distributions

Bernoulii Distribution Standard Normal Distribution Uniform Distribution
05
1
0.5 04 :
=~ 0.8
I ~03 506
o) = =
02
E’ 0.4
0.1 0.2
0 1 % 0 1 3 0 0 1
T T T
1 1 1
&= B =
0.5 ] =05 =~ 0.5]
Iy R
1 [ 1 2 3 0 1 3 = 1
T x x
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Discrete distributions

The Bernoulli distribution for a single binomial outcome (trial)
is

Prob(x=1) = p,
Prob(x=0) = 1—p,

where 0 < p < 1 is the probability of success.
» Elx] =p and
> EX’=px1®+(1-p)x0*=p
> V[x] = E[x*] = E[x* =p — p* = p(1 — p).
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Discrete distributions

The distribution for x successes in n trials is the
binomial distribution,

Prob(X = x) = )'X'px(l -p)"™* x=0,1,...,n.

(n—x
The mean and variance of x are
» E[x] =npand
> Vx| =np(l-p).
Example of a binomial [n = 15, p = 0.5] distribution:

LF(n/2-0)-F(n/2+x)
4 3
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Discrete distributions

The limiting form of the binomial distribution, n — oo, is the
Poisson distribution,

A\ X
Prob(X — x) = £
X!
The mean and variance of x are
» E[x] = Aand
> Vix] =\

Example of a Poisson [3] distribution:

Prslx)=X/xt &
1 15
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The normal distribution

Random variable x ~ N[u, o] is distributed according to the
normal distribution with mean ; and standard deviation o

obtained as
1

e 2 (5", (10)

1
The density is denoted ¢(x) and the cumulative distribution
function is denoted ®(x) for the standard normal. Example of a
standard normal, (x ~ N[0, 1]), and a normal with mean 0.5 and
standard deviation 1.3:

N~(0,1) N~(0513)
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Transformation of random variables

Continuous variable x may be transformed to a discrete variable
y. Calculate the mean of variable x in the respective interval:

Prob(Y =) = P(—o<X<a),
Prob(Y = us) = P(a<X<b),
Prob(Y = u3) = P(b< X < 0).
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Method of transformations

If x is a continuous random variable with pdf fy(x) and if y = g(x) is a continuous
monotonic function of x, then the density of y is obtained by

b
Probly <) = [ fula™ ()lg™ " ().
With f,(y) = f«(g~(y))lg~Y"1(y)|dy, this equation can be written as
b
Prob(y < b) = / f,(y)dy.

If x ~ N[u, 02, then the distribution of y = g(x) = X~ I is found as follows:
o

gy =x=oy+p

_ o
=5 -

o

()

Therefore with fx(x) = e— 2@ -3/ g~V ()

o s

1 2 2 1 2
oyt 20 2
’y(y) = ——¢€ [( Y ) ] / |0'| = —¢ Y / o 27109



Properties of the normal distribution

» Preservation under linear transformation:
If x ~ N[u, 02], then (a + bx) ~ N[a + by, b202].

» Convenient transformationa = —u/ocand b = 1/0:

(X —p)

The resulting variable z = has the standard normal

distribution with density

1 2

¢(Z)_Ee 2.

X—u]

> 1f x ~ N[, 02], then f(x) = g
g g
a—p _X—p b—u)

< <
o o o

> ¢(—2) = ¢(z) and &(—x) = 1 — ®(x) because of symmetry

» Prob(a < x < b) = Prob (
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Method of transformations

If 2 ~ N[0, 1], then 22 ~ x2[1] with pdf %e_”/?

Ty
1
fx(x) = Ee‘?
y=g(x) =x*

g~ 1(y) = x = £/y there are two solutions to g1, go.
dx
—1r T )Y —1/2
g W d +1/2y

fy(y) = (@7 " W)lar V' W)+ Fe(g5  )lgs M )]

) = KDL/~ 2 + (=)l — /29713
1 y 1

f(y) = —=—e" = 755

[

_y
2

1
@
2./2my + 2./2my
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Distributions derived from the normal

> If z ~ N[0, 1], then 2> ~ x*[1] with E[z°] = 1 and V[Z°] = 2.
> If x1,..., X, are n independent x*[1] variables, then

n
> xi~x’In).
i=1

» Ifz;,i=1,...,n, are independent N[0, 1] variables, then
n
>z ~x*n).
i=1

> Ifz,i=1,..,n,are independent N[0, o*] variables, then
n

> <j)2 ~x*[n].

i=1

> If x; and x, are independent x” variables with n; and n, degrees of
freedom, then
X1+ X2 ~ X2[n1 + na].
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The y? distribution

Random variable x ~ x?[n] is distributed according to the
chi-squared distribution with n degrees of freedom

XN/2—1g—x/2
f(x|n) = W, W)
where I' is the Gamma-distribution (more below).
> Ex]=n
> Vix] =2n

Example of a x*[3] distribution:
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The F-distribution

If x; and x5 are two independent chi-squared variables with
degrees of freedom parameters n; and n,, respectively, then the
ratio

Xl/nl
X2/ (12)

has the F distribution with n; and n, degrees of freedom.

F[nl,ng] =

Finyn:) densities
115 2 25 3
6 8

5

0
0

0 1 2 3 0 1 2 3

) — ({21

) ——— (nune)=(10,1)
)=(100,100)
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The student t-distribution

If zis an N[0, 1] variable and x is x?[n] and is independent of z,
then the ratio

tln] = . (13)

has the t distribution with n degrees of freedom.
Example for the t distributions with 3 and 10 degrees of
freedom with the standard normal distribution.

Comparing (12) with n; = 1 and (13), if t ~ t[n], then t* ~ F[1, n].
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The t[30] approx. the standard normal

student-t(n) densities

X

— n=1 n=2 —— n=5
n=30 n== === standard normal
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Approximating a x>

For degrees of freedom greater than 30 the distribution of the
chi-squared variable x is approx.

z=(2x)Y2 — (2n — 1)/2, (14)
which is approximately standard normally distributed. Thus,

Prob(x?[n] < a) ~ ®[(2a)'/? — (2n — 1)*/?].

0 20 40 60 80
X

— X130

— O[(2*%) " (2%30-1)""]

50/109



2.6 Other Useful Distributions




The lognormal distribution

The lognormal distribution, denoted LN/, 0—2], has been
particularly useful in modeling the size distributions.

1 S
e Ax-w/el® x>0

f =
(X) 2moX

A lognormal variable x has
> E[x] = e**7*/? and
> Varlx] = e2t7° (e" —1).
If y ~ LN[u,0?], then Iny ~ N|u, o).
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The gamma distribution

The general form of the gamma distribution is

2]

f(x) = F/zp)e"\xxp_l, Xx>0,A>0P>0. (15)
Many familiar distributions are special cases, including the
exponential distribution(P = 1) and
chi-squared(\ = 1/2, P = n/2). The Erlang distribution results
if P is a positive integer. The mean is P/, and the variance is
P/)\2. The inverse gamma distribution is the distribution of 1/x,
where x has the gamma distribution.
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The beta distribution

For a variable constrained between 0 and ¢ > 0, the
beta distribution has proved useful. Its density is

f(x) = % (g)a_l (1 - g)ﬂ_l % X>0,A>0,P>0.

It is symmetric if o« = 3, asymmetric otherwise. The mean is
ca/(a + B), and the variance is c®a3/[(a + 8+ 1)(a + B)?).
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The logistic distribution

The logistic distribution is an alternative if the normal cannot
model the mass in the tails; the cdf for a logistic random

variable is .

F(x) = A(x) = Trex

The density is f(x) = A(x)[1 — A(x)]. The mean and variance of
this random variable are zero and 7?/3.

Standard Normal
Logistic (m=0, s=1))
Rescaled Logit (m=0,5=0.61)
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The Wishart distribution

The Wishart distribution describes the distribution of a random
matrix obtained as
n

W) = (i — ) (xi — )
i=1
where x; is the ith of nK element random vectors from the
multivariate normal distribution with mean vector, p, and
covariance matrix, Y. The density of the Wishart random matrix
is
exp [—%trace(Z*W)] W| 2 (K1)
1
9nK/2| 53 |K/2 K (K=1)/4 Hj . <n+ 1)

The mean matrix is nX. For the individual pairs of elements in W,

f(W) =

COV[W,']', W,—s] = n(O','rO'jS + Uiso'jr)-

The Wishart distribution is a multivariate extension of y?
distribution. If W ~ W(n, o%), then W/o* ~ x?[n].
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2.7 Bivariate Distributions, Covariance &
Conditional Moments




Bivariate distributions

For observations of two discrete variables y € {1,2} and x € {1, 2, 3}, we can calculate

> the frequencies ny.y,

> conditional distributions f(y|x) and f(x|y),
>

>

freq. ny y y=1 y=2 f(x) = nx/N cond. distr. f(y|x) y=1 y=2 Z
y

x=1 1 2 3/10 f(y|x = 1) 1/3 2/3 1
x=2 1 2 3/10 f(y|x = 2) 1/3 2/3 1
x=3 0 4 4/10 f(y|x = 3) 0 1 1
fly) =ny/N  2/10 8/10 1 flylx=1,x=2,x=23) 1/5 4/5 1
cond. distr.
fixly)  fixly=1) fixly=2) fxly=1,y=2)
x=1 1/2 /4 3/10
Xx=2 1/2 /4 3/10
x=3 0 /2 4/10
> 1 1 1
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Bivariate distributions

For observations of two discrete variables y € {1,2} and x € {1, 2, 3}, we can calculate

> the frequencies ny.y,

> conditional distributions f(y|x) and f(x|y),

> joint distributions f(x, y), and

>
freq. ny y y=1 y=2 f(x) = nx/N cond. distr. f(y|x) y=1 y=2 Z

y

x=1 1 2 3/10 f(ylx = 1) /3 2/3 1
Xx=2 1 2 3/10 f(y|x = 2) /3 2/3 1
x=3 0 4 4/10 f(y|x = 3) 0 1 1
fly) =ny/N  2/10 8/10 1 flylx=1,x=2,x=23) 1/5 4/5 1
cond. distr. joint distr.
fixly)  fixly=1) f(xly=2) flxly=1,y=2) f(xy) flx,y=1) flx,y=2)
x=1 1/2 /4 3/10 f(x =1,y) 1/10 2/10
x=2 1/2 1/4 3/10 f(x = 2,y) 1/10 2/10
x=3 0 1/2 4710 f(x = 3,y) 0 4/10
> 1 1 1

X 57/109




Bivariate distributions

For observations of two discrete variables y € {1,2} and x € {1, 2, 3}, we can calculate

> the frequencies ny.y,

> conditional distributions f(y|x) and f(x|y),

> joint distributions f(x, y), and

> marginal distributions f,(y) and fx(x).
freq. ny y y=1 y=2 f(x) = nx/N cond. distr. f(y|x) y=1 y=2 Z

y

x=1 1 2 3/10 f(ylx = 1) /3 2/3 1
Xx=2 1 2 3/10 f(y|x = 2) /3 2/3 1
x=3 0 4 4/10 f(y|x = 3) 0 1 1
fly) =ny/N  2/10 8/10 1 flylx=1,x=2,x=23) 1/5 4/5 1
cond. distr. joint distr. marginal pr.
fixly)  fixly=1) f(xly=2) flxly=1,y=2) f(x,y) flx,y=1) f(x,y=2) fx (%)
x=1 1/2 /4 3/10 f(x =1,y) 1/10 2/10 3/10
x=2 1/2 14 3/10 f(x = 2,) 1/10 2/10 3/10
x=3 0 1/2 410 f(x = 3,¥) 0 4/10 4/10
> 1 1 1 marginal pr. fy (y) 2/10 8/10 1
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The joint density function

Two random variables X and Y have joint density function

> if x and y are discrete

fx,y) =Prob(a<x<bc<y<d)= > > f(xy)

a<x<bc<y<d

» if x and y are continuous

b d
f(x,y) = Prob(a < x < b,c <y < d) / / f(x, y)dxdy
a (o}

Witha =1,b = 2,c = 2,d = 2 and the following f(x, y)

joint distr.

f(x,y) fx,y=1) f(x,y=2)
fx =1,y) 1/10 2/10
fx = 2,y) 1/10 2/10
f(x = 3,) 0 4/10

Prob(1 <x<2,2<y<2)=fly=2,x=1)+fly=2,x=2) =2/5.
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Bivariate probabilities

For values x and y of two discrete random variable X and Y, the
probability distribution

f(x,y) = Prob(X =x,Y =y).
The axioms of probability require

f(x,y) >0,

> fxy) =1
Xy

If X and Y are continuous,
//f(x,y)dxdy =1.
xJy
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The bivariate normal distribution

The bivariate normal distribution is the joint distribution of two
normally distributed variables. The density is

1 2., .2 2
f X’ = e_1/2[(6x+5y _2p5X6,V)/(1_p )]a 16
(x,¥) S (16)
whereeX:X_”X,andey:y_My.

Ox CTy
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The joint cumulative density function

The probability of a joint event of X and Y have
joint cumulative density function

» if x and y are discrete
Fix,y) = Prob(X <x, Y <y) = 33 flx,y)

X<x Y<y

» if x and y are continuous

Xy
Flx,y) = Prob(X <x,Y <y) = / / f(t,s)dsdt

Example

With x = 2,y = 2 and the following f(x, y)

f(x,y) fix,y=1) f(x,y=2)

fx=1,y) 1/10 2/10 RS I
fix = 2.y) 1/10 2/10 .

fix = 3.y) 0 4/10

Prob(X < 2,y <2)=f(x=1,y = 1)+
fx=2,y=1)+f(x=1,y=2) +f(x =2,y =
2) = 3/5.
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Bivariate probabilities

For values x and y of two discrete random variable X and Y, the
cumulative probability distribution

F(x,y) = Prob(X < x,Y <y).

The axioms of probability require

0 <F(x,y) <1,
F(oo,0) =1,
F(—OO,y) = 07
F(x,—o00) = 0.

The marginal probabilities can be found from the joint cdf

fx(x) = P(X < x) = Prob(X < x,Y < 00) = F(x,0).
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The marginal probability density

To obtain the marginal distributions f,(x) and f,(y) from the joint density
f(x,y), it is necessary to sum or integrate out the other variable. For example,

» if x and y are discrete
fu(x) = > f(x.y),
y
» if x and y are continuous

fi(x) = /f(x, s)ds.
y

f(x,y) flx,y=1) flx,y=2) fx(x)
fix=1,y) 1/10 2710 3/10
fix = 2.y) 1/10 2/10  3/10
fx = 3,%) 0 410  4/10
f,(v) 2/10 8/10 1

fxk(x=1)=fx=1,y=1)+f(x =1,y =2) = 3/10.

y=2)=fx=1,y=2)+f(x =2,y =2)+f(x =3,y =2) = 4/5.
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The bivariate normal distribution

(x)d
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Why do we care about marginal distributions?

Means, variances, and higher moments of the variables in a
joint distribution are defined with respect to the marginal
distributions.

> Expectations

If x and y are discrete

Elx] = fox(x) = Zx [Z f(x,y)] = Z fo(x,y).
X X y Xy

If x and y are continuous

Elx] = /X xfy(x) = /X /y xf(x,y)dydx.
» Variances

Varix] = S0 — EX)*(x) = 37 57 (x — EX)*(x.y).

X Xy
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Covariance and correlation

For any function g(x, y),
> > g yf(x,y)  inthe discrete case,
Xy

Elg(x,y)] = a7)
/ / g(x,y)f(x,x)dydx in the continuous case.
xJy

The covariance of x and y is a special case:

Covix,y|

El(x — ) (y — 11y)]
= EXy] — pxpy = oxy

If x and y are independent, then f(x, y) = fx(x)f,(y) and
oy = D KR — )y — py)
Xy
= D (= wf(¥) > (v — m)fy(y) = Elx — px]Ely — py] = 0.

X y

. 0,
> correlation pyy = —~
O'xO'y

> oy does not imply independence (except for bivariate normal).
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The conditional density function

The conditional distribution over y for each value of x (and vice versa) has conditional
densities o) o)
X, X,
o =25 o =70
The marginal distribution of x averages the probability of x given y over the distribution
of all values of y fx(x) = E[f(x|y)f(y)]. If x and y are independent, knowing the value of y
does not provide any information about x, so fx(x) = f(x|y).

Example

cond. distr. joint distr. marginal pr.
fixly) fixly=1) f(xly=2) flxly=1,y=2) f(x,y) f,y=1) f(x,y=2) fx (%)
x=1 1/2 1/4 3/10 f(x =1,y) 1/10 2/10 3/10
x=2 1/2 1/4 3/10 f(x = 2,y) 1/10 2/10 3/10
x=3 0 1/2 4/10 f(x = 3,y) 0 4/10 4/10
> 1 1 1 marginal pr. fy(y) ~ 2/10 8/10 1
X
f(x = 3,y = 2)
f(x=3ly=2)= —— = =4/10 x 10/8 = 1/2.

fy(y = 2)

fx(x = 2) = Ey[f(x = 2|y)f(y)] = f(x =2y = Df(y = 1) + f(x = 2|y = 2)f(y = 2) 68/109



Conditional mean aka regression

A random variable may always be written as

y = Elyid+(y—Elyk])
= Elyx] +e.

The regression of y on x is obtained from the conditional mean

> yf(ylx)  ifyis discrete,
y
Ely|x] = (18)
/yf(yx)dy if y is continuous.
y
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Conditional mean aka regression

Predict y at values of x:

D yflylx=1)=1x2/3+2x2/3=5/3.
y

1 2 3
X

© Data oLs

m Conditional Expectation 90% Confidence from Conditional Variance
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Conditional variance

A conditional variance is the variance of the conditional distribution:

> (v —Elylx))*f(ylx)  ifyis discrete,
Varly|x] = ’ (19)

/(y — Ely|x))* f(y|x)dy, ifyis continuous.
y
The computation can be simplified by using

Varly|x] = E[y*|x] — (Ely|x])* > 0. (20)

Decomposition of variance Var[y] = Ex[Varly|x]] + Varx[E[y|x]]

» When we condition on x, the variance of y reduces on average.
Varly] > Ex[Varly|x]]

> Eyx[Varly|x]] is the average of variances within each x
> Vary|E[y|x]] is variance between y averages in each x.
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Conditional expectations and variances

> Ely|x =1] = 1.67, E]y|x = 2] = 1.67,and E[y|x = 3] = 2

> Vylx=1] =0.22, V[y|x =2] = 0.22,and V[y|x = 3] =0

fylx) y=1 y= f(x,¥) fx,y=1) flx,y=2) ()
flylx = 1) 173 2/3 1 fx=1,y) 1/10 2/10  3/10
f(ylx = 2) 173 2/3 1 fx = 2,y) 1/10 2/10  3/10
f(ylx = 3) 0 101 f(x = 3,y) 0 4/10  4/10

fy(y) 2/10 8/10 1

Elyx=1]=1/3x 1+2/3x2=5/3
Elyx=2]=1/3x1+2/3x2=5/3

Eylx=3]=0x1+1x2=2

Vyix =1] = 12 x 1/34+22 x 2/3 — (5/3)% = 2/9
Viylx = 2] = 12 x 1/34+2% x 2/3— (5/3)% = 2/9
Vyx=3]=12x0+22x1-22=0

alternatively (requiring more differences)

Vlylx = 1] = (1-5/3)2x1/3+(2—5/3)?x2/3 = 2/9
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Conditional expectations and variances

Average of variances within each x, E[V[y|x]] is less or equal total variance E[y].

> Use the conditional mean to calculate E[y]:
ElY) = Ex[ElyIN] = Elylx = 1]f(x = 1) + Elylx = 2]f(x = 2) + Ely|x = 3]f(x = 3)

=5/3%x3/10+5/3 x 3/10 +2 x 4/10 = 9/5.
Ely] => fy(y) =1 x 2/10 + 2 x 8/10 = 9/5.
y

> Variationiny, V[y|x = 1] = 0.22, V[y|x = 2] = 0.22,and V[y|x = 3] = 0 due to variation in x, is on
average
E[Vly|x]] = 3/10 x 2/9 + 3/10 x 2/9 4+ 4/10 x 0 = 2/15.

> For each conditional mean E[y|x = 1] = 5/3,E[y|x = 2] = 5/3, and E[y|x = 3] = 2, y varies with
VIEYI] = E[EWIN)?] — (Elylx)? =
3/10 x (5/3)2 +3/10 x (5/3)2 4+ 4/10 x (2)2 — (9/5)% = 2/75.

> E[V[y|x]] + VIEly|x]] = VIy] = 2/75 + 2/15 = 4/25.
With degree of freedom correction (n — 1) (as reported in software):
E[VIy|X]] + VIEly|x]] = VIy] = 2/75/(10 — 1) x 10 + 2/15/(10 — 1) x 10 = 8/45.
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Properties of the bivariate normal

Recall bivariate normal distribution is the joint distribution of
two normally distributed variables. The density is

1 2, 2 2
f X’ = e_1/2[(€x+€y —2p6x€y)/(1—p )]a 21
(x,¥) S (21)
whereeX:X_”X,andey:y_My.
Ox (Ty

The covariance is oyy = pxyoxoy, Where
» —1 < pyy < listhe correlation between x and y

> [ix, Ox, iy, oy are means and standard deviations of the

marginal distributions of x or y
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Properties of the bivariate normal

If x and y are bivariately normally distributed
(X,¥) ~ No[pux, py, U)%,U;%apxy]
» the marginal distributions are normal
fe(x) = Nlux, o%]
fy(y) = Nlpy, oy]
» the conditional distributions are normal
f(y|x) = Nla + Bx, 07 (1 — p*)]
0,
a=py—BuxiB= "5
Ox
> f(x,y) = fx(X)fx(x) if pxy = 0: x and y are independent if and

only if they are uncorrelated
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Useful rules

Pry = Ox0y

» Elax + by + c] = aE[x] + bE[y] + ¢

> Varlax + by + c] = a*Var[x] + b?Varly] + 2abCov|x,y] =
Var[ax + by]

» Covlax+by, cx+dy] = acVar|x]+bdVarly|+ (ad+bc)Cov[x, y]

» If X and Y are uncorrelated, then

Var|x + y|] = Var|x — y] = Var|x] + Varly].
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Useful rules

> Linearity
Elax + by|z] = aE[x|z] + bE[y|z].

» Adam'’s Law / Law of Iterated Expectation
Ely] = Ex[Ely|x]]
» Adam'’s general Law / Law of Iterated Expectation
Elylg92(9:(x))] = E[E[y|g1(x)]|g2(g1(x))]

» Independence

If x and y are independent, then
Ely] = Elylx],

E[g1(x)g2(y)] = E[g1(X)]E[g2(y)].
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Useful rules

» Taking out what is known
Elg1(3)g2(y)IX] = g1 (X)E[g2(y) [X]-
» Projection of y by E[y|x], such that orthogonal to h(x)
E[(y — ElyX])h(x)] = 0.

» Keeping just what is needed (y predictable from x needed, not
residual)
E[xy] = E[XEy|x]].

> Eve's Law (EVVE) / Law of Total Variance
Varly] = Ex[Varly|x]] + Varx[E[y|x]]
» ECCE law / Law of Total Covariance

Cov|x,y] = E;[Covly, x|z]] + Cov,[E[x|z], E]y|Z]] 78/109



Useful rules

> Covix,y] = Covy[x,E[y|x]] = /(x — E[x]) E[y|x]fx(x)dx.

> If Ely|x] = a + fx, then o = Ely] — SE[x] and § = C\(;;E[()’(]y]

> Regression variance Vary[E[y|x]], because E[y|x] varies with

X

» Residual variance Ex[Var|y|x]] = Varly| — Varx[E]y|X]],
because y varies around the conditional mean

» Decomposition of variance

Varly] = Vary[E[y|x]] + Ex[Varly|x]|
regression variance

total variance
» If E[y|x] = o+ Sx and if Var[y|x] is a constant, then

» Coefficient of determination =

Varly|x] = Varly] (1 — Corr*[y,x]) = o, (1 — o3,
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The joint multivariate distribution

For three or more random variables, the joint pdf and joint cdf
are defined in a similar way to what we have already seen for
the case of two random variables.

» For discrete variables X1, Xs, . .., X, the joint probability

mass function is

PX1,X2,.,.,Xn (X17X27 e 7Xn) = PX1:X1,X2=X2,...7Xn:Xn'

» The joint density in the continuous case is

X, Xo, Xo (X1, X2, ..., Xp).

80/109



Cumulative and marginal distributions

> We can integate the pdf over a set A to obtain the probability set A

P[(X1,X2,...,Xn) € A] :/.../.../thx2 ,,,,, Xo (X1, X2, ..., Xn)dX10dX2 . .. dXp.

FX1 X250, Xn (X17X27 cee 7X”) = PX1§X1,X2§X2,~-~,XnSXn

/ / / fX1,X2 ,,,,, xn(Xl,XQ,...,Xn)dxldXQ...an

» The marginal pdf of x; can be obtained by integrating all other x;’s.

For example,

Xp —» 00 X2 —>00
fx, :/ / Xy Xo, X0 (X1, X2, ..o, Xn)dX2 . .. dXp.

— 00 — 0o
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Integrating out

¢ = 1/3 for the three continuous random variables X, Y, Z with
joint pdf

fxyzy=c(x+2y+3z)for0<x,y,z<1

and zero otherwise.

Z—00 [Yy—00 [X—>00
Fxyz=1= / / / fx,v,z(x, ¥, 2)dxdydz
— 00 — o0 —00

1,1 p1 1 X2 1 0 1
:/0 /0 /0 c(x + 2y + 3z)dxdydz. /Oxdx:?}ozg_gzg,
11 1 2. 2 0
vaz:l:/ / c(1/2 + 2y + 3z)dydz. /ydy:2—10:—727:1.
0 Jo 0 2 2 2
FXYZ:1:/1C(3/2+3z)dz. /1zdzzgi|é:§,39:3/2.
0 0 2 2 2
Fxyz =1 = 3c
c=1/3.
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Marginal pdf

fx(x) = 1/3(x+ 5/2) for 0 < x < 1 and zero otherwise if the
three continuous random variables X, Y, Z are distributed with
joint pdf

fxyz =c(x +2y +3z)for0 < x,y,z<1

and zero otherwise.

Z—00  [y—>00
fx = / / fx,v,z(x,y,z)dydz
— oo —oo

Lot . - v, 2 0
= c(x+2 3z)dydz. =2 |- == —2- =1.
f [ etct 2+ sy [y =250 =2 -2
1 1 2 a8 0
:/ c(x+ 1 + 3z)dz. / 2dz=3—|; == —3- =3/2.
0 0 2 2 2
=c(x+5/2)

fx(x) =1/3(x+5/2)for0 < x < 1else0.
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Independence and identical distribution

Analysis is simplified in the case of independent random
variables. If variables also have the same cdfs, they are
identically distributed.

With independence:

> Px, X, X (X1, X2, - Xn) = Px, (X1)Px; (X2) . .. Px, (Xn)
> FXl,Xz ,,,,, Xn(X17X2a~"7Xn) :FX1(X1)FX2(X2)"'FXn(Xn)
> fX1,X2 ..... Xn(Xl,Xg,...,Xn) = fXI(Xl)fX2<X2)~--fX,,(Xn)

> EX1,Xa, ..., Xn] = E[X1]E[Xo] . .. E[X,)]

If they are independent and identically distributed (i.i.d.)
> same marginal distribution Fx, (x) = Fx, () ...Fx,(X)

> same means E[X;,Xs, ..., Xp] = E[X1]E[X2] ... E[Xp] =
EXJEXy] ... E[X] = E[X,]".
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2.8 Random Vectors & the Multivariate Normal




Random vectors and moments

For more than two random variables, matrix notation is useful,
because this makes the formulas more compact and lets us
use facts from linear algebra.

In a random vector elements are random variables. The mean

vector is
1 Efx1]

P e e =S

Hn E[xn]
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Random vectors and moments

The squared-deviations from the mean matrix is

(1 —p1)(x1 —p1)  (xa—p1)(xe —p2) oo (X1 — p1)(Xn — pn)

(X2 —p2)(X1 —p1) (X2 — p2)(X2 —p2) -+ (X2 — p2)(Xn — pn)
(x—p) (x—p) = . . )

(X0 —pn)(x1 — 1) (Xo — pn)(X2 —p2) oo (Xn — pn)(Xn — pn)

The expected value of each element in the matrix is the covariance of the two variables

in the product.

The variance-covariance matrix of the random vector x is

o11 012 -+ Oln
g21 022 -+ O2n

Varl] = S = E[((x —pw)(x— )] = | . . | =Ex]—pu'.
Onl  On2 Onn
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Random vectors and moments

By dividing o by jo;, we obtain the correlation matrix

1 pi2 p13 -+ pmn
p2r 1 pa3 -+ pop

Pnl1 Pn2 Pn3 - 1
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Properties of the covariance matrix

3 is a symmetric matrix because o = oj;.
» symmetric matrices can be diagonalized
» all the eigenvalues are real.
Covariance matrices are always positive semi-definite
> Ify =a'(x — p), Elyy] = a'E[(x — p)(x — p)']a=a'Sa >0,
Y. is positive semi-definite.

» If and only if det[X] > 0, implying that all eigenvalues are

larger than zero, X is positive definite.
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Linearity of expectations

What if we weight the random variables with a vector of
constants, a?

Elaix; +asXxo + -+ +apxn] = E[a'x]

a1E[x1] + a2E[x2] + - - - + anE[xp]
aipy +aspz + -+ anin

= apu.

For the variance,
Varla'x] = E [(a’x - E[a’x])2]
= E [a' (X — E[x]ﬂ
= Ef@'(x—p)(x—p)al
asEjx]=panda'(x —pu) = (x— p)a.

Because a is a vector of constants,

n n
Var[a'x] = a'E[(x — p)(x — p)']a=a'Sa = Z Zaiajaif > 0. 89/109



Linearity in a system of equations

We can transform random vector x linearly to y using

y =A Xx+ b

mw1  mxkkx1l mx1

Y1 a;n ap ... ax| [x1 by
2 asy ax ... ax| |X by
L= . . . A I o
Ym dmi am2 ... Aamg Xy bm

Then linearity of expectation

Ely] = AE[x] + b.
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Linearity in a system of equations

We can transform the covariance matrix of a random vector x
linearly usingy = Ax + b to

Var[A'x] = A’SA.

By linearity of expectation

Ely] = AE[x] + b

Var|A'x] = E[(y — Ely])(y — Ely])’]
= E[(Ax + b — AE[x] — b)(Ax + b — AE[x] — b)']
= E[A(x — E[x])(x — E[x])'A"]
= AE[(x — E[x])(x — E[x])]A’
—A'SA.
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The method of transformations

We can transform the pdf f(x) of a random vector x linearly
usingy = mémmxl + b with to f(y).
X

x=A"'y—b).

J = det(A™!)

) = gagzay A~ 0~ b))
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The method of transformations

We can transform f(y) = f(B(y))|J| withy = G(x),B = G~' and
Jacobian

[Oh: Ohy Ohi 7
oyr  0Oy2 0y
J=det|Oy1 9y2 = 0OYm
Ldy1  Oya  OYymd
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The method of transformations

Approximate each element of the linear or nonlinear functions y = g(x) with a
Taylor series. Let j' be the row vector of partial derivatives of the ith function

with respect to the n elements of x:

. 8;x 3,'
foo = 290 _ o0, (22

We use p as the expansion point. Then

gi(x) ~ gi(p) +j (m)(x — ). (23)

From this we obtain

1%

E[gi(x)] gi(p),
Varlgi(x)] ~ (w3 (w),

and
Cov(gi(x), g;(x)] ~j (1) 5F (1 (24)
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The method of transformations

Arranging the row vectors j () in a matrix J(x). Then,
Elg()] ~ g(p) (25)

Var[g(x)] = J()SJ(p)". (26)
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Useful rules

> E[AX] =Ap
> Var[A'x] = A’SA > 0 is a non-negative definite aka positive
semi-definite quadratic form

it is positive definite if A has full column rank; i.e.
det(A) =AA2... Ay > 0.

> 3 =R — E[x|E[x]
> Cov(x,y) = E[(x — E[x])|E[(y — Ely])'
> f(y) = f(B(y))|J| withy = G(x), B = G~ ' and Jacobian J.
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The multivariate normal distribution

Let the vector (X1, Xo, ..., X,) = x be the set of n random
variables, p their mean vector, and X their covariance matrix.
The general form of the joint density is

f(x) = (Qﬂ)—n/2‘g,—1/26(—1/2)(X—u)’2‘1(X—u)_ (27)

If R is the correlation matrix of the variables, R; = oj;/(0jo;) and
A7NX — p) = (X — ) /oy then

R=A"'ZA!

2—1 — A_lR_lA_l

f(x) = (21) "*(0105...0p)_1|R| /26" eR e, (28)

where ¢; = (x;j — i) /oi.
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The multivariate normal distribution

If all variables are uncorrelated p; = 0 and R = I, then the
density becomes

f(x) = (27) (o105 ...00) e/, (29)

n

f(x) = f(x0)f(x2) ... fxn) = [ Fx0). (30)

i=1

If 5; = o and p = 0, then x; ~ N[0, 0] and ¢; = x;/o, and the
density becomes the multivariate standard normal or spherical
normal distribution

f(X) _ (27T)—n/2(02)—n/26—x’x/(2o2)' (31)

Finally, if o =1,
f(x) = (2m)""/2e7X*/2, (32)
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The marginal normal distributions

Let x; be any subset of the variables, including a single variable, and

let x, be the remaining variables. Partition  and X likewise so that

Theorem (Marginal and Conditional Normal Distributions)

If [u1, p2] have a joint multivariate normal distribution, then the

marginal distributions are

M1~ N(thll) M2 ~ N(H27 E22)~ (33)
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The conditional normal distributions

The conditional distribution of xy given x5 is normal as well:

X1|x2 ~ N(p1.2,%11.2), (34)

where

pio = p1 + S12355 (Xo — pa),

S0 =311 — Z1285 Doy
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How do marginal, conditional and joint density relate?

f(x1,X2) = f12(X1|X2)fa(X2).

Multiplying the marginal distribution of x; and the distribution
of x; conditional on x; gives the joint density.
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Properties of the normal

> Any linear function of a vector of joint normally distributed variables is

also normally distributed. If x ~ N[u, 3], then
Ax+b ~ NAp+b,ATA’.

» For normal random vector x, if Cov(x;, x;) = 0, then x; and x; are

independent.
> If x ~ N[0, /] and C is a square matrix such that C'C = I, then
C'x ~ N[0, 1].

» Distribution of quadratic form in standard normal
If x ~ N[0, ]] and A is idempotent, then x'Ax has a x distribution with
degrees of freedom equal to the number of unit roots of A, which is

equal to the rank of A.
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Properties of the normal

» Independence of idempotent quadratic forms
If x ~ N[0, I] and x’Ax and x'Bx are two idempotent quadratic forms in x,
then x’Ax and x'Bx are independent if AB = 0.

» Independence of a linear and a quadratic form
A linear function Lx and a symmetric idempotent quadratic form x’Ax in

a standard normal vector are statistically independent if LA = 0.

» Distribution of a Standardized Normal Vector
If x ~ N[, ], then S7'/2(x — p) ~ N[O, I.

> Ifx ~ N[u, ], then (x — )’ S~ (x — ) ~ x[n].
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The classical normal linear regression model

Definition

Recall that any random variable y, can be written as its mean
plus the deviation from the mean. If we apply this tautology to

the multivariate normal, we obtain
y=Eylx] + (y — Elylx]) = a + B'x + ¢,

where 3 = Zg}axy is given earlier, « = uy — B'px, and e has a
normal distribution. We thus have, in this multivariate normal

distribution, the classical normal linear regression model.
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Transformation of bivariate random variables

Suppose that x; and x, have a joint distribution fx(x;, x2) and
that y; and y, are two monotonic functions of x; and xs:

yi = Yi(xi,x2),

Yo = Ya(X1,X2).
Because the functions are monotonic, the inverse
transformations,

X1 = Xl(y17y2)7

X2 = Xa(y1,Y2),

exist. The Jacobian of the transformations is the matrix of
partial derivatives,

OXx1/0y1 0X1/0ya
= = | Ox/0 .
oxa)dyy Oxo/dys | = L K]

The joint distribution of y; and y- is
fy(y1,y2) = fx[X1(y1,¥2), X2(y1,y2)]abs(|J|).
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Linear transformation of x;

Suppose that x; and x, are independently distributed NJ[0, 1],
and the transformations are

Y1 = oq+ BuXi + PiaXa,
Yo = g+ BaiX1 + PaaXa.
To obtain the joint distribution of y; and y», we first write the

transformations as
y =a+ Bx.

The inverse transformation is
X = Bil(y - a)7

so the absolute value of the determinant of the Jacobian is

1

abS|J| - abS|B_1| - m
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The joint distribution of x is the product of the marginal
distributions since they are independent.

fx(x) = (27r)_1e_(X%+X§)/2 (2m)~ lg—X/x/2.

Inserting the results for x(y) and J into f,(y1,y2) gives

1 / /\—1
— -1 —(y—a)'(BB')"*(y-a)/2
fy(y) = (2m) abs|B| e .
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Application: How to find the distribution a function of two random variables

Find y;1(x1, x2) from
» form the joint distribution of the transformed variable
y1(x1, x2) and one of the original variables y; = x»
» integrate (or sum) y» of the joint distribution to obtain the
marginal distribution f,, (y1)
To find the distribution of y; (x1, x2), we might formulate

Yi = Yi(xi,x2)

Y2 = Xo.
The absolute value of the determinant of the Jacobian would
then be
o on
J=abs| M1 Oy2 = abs % .
o L ( oy1 )’

The density of y; would then be

fy,(y1) = fx[X1(y1,Y2).y2]abs|J|dy,.
Y2
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