Advanced Econometrics
01 Review of Matrix Algebra

Eduard Brill
Fall 2025



Course Structure

Main Lectures

» Tue & Thu 10:15-11:45
0129 (Tue), 0048 (Thu)
Dates: Oct 7 — Dec 4, 2025

Computer Sessions
» Wed 15:30-17:00

L7, 3-5, Room 358
Dates: Oct 8 — Dec 3, 2025

Exercises / Tutorials
» Fri10:15-11:45

0048 (Schloss Ostfliigel)
Dates: Oct 10 — Dec 5, 2025

» Collect bonus points: Hand-in exercises
(counts for grade in final exam)

» Effort counts
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Assessment, Materials & Instructors

Assessment

» Written exam in late Dec 2025
If everything works out: 16.12.2025
Second exam: early Feb 2026

Materials

> Main reference: Greene, Econometric Analysis, 7" edition

» Additional readings and datasets available on ILIAS

Instructors

» Eduard Briill — Eduard.Bruell@zew.de
» Mishelle Segui — mishelle.segui@uni-mannheim.de

» Jan Kemper — jan.kemper@zew.de
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Overview of Topics

Review and Foundations

» Review of Matrix Algebra

» Probability and Distribution Theory
Estimation Techniques

» Linear Regression Model and OLS

» Maximum Likelihood Estimation

» General Method of Moments (GMM)
Applications and Extensions

» Time Series Models

» Models for Panel Data

» Difference-in-Differences and Event Studies
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Remarks on Readings

Main reference: > Lecture serves as a guideline. The order
Greene, Econometric of topics may differ from Greene.
ﬁnal}{gls > Greene is a modular book.
7" edition
‘ + Advantage: Excellent reference.
w — Downside: Dense; more detail than

one can digest on a first read.

.. > Geta “second opinion” from Greene on
each topic covered in lecture.

soe®
3

> Take note of material not discussed in
class. It helps to know what you don’t
know.

> Lectures emphasize the essential and
sometimes “ugly” parts. Don't skip the
“nice” parts in Greene: Introductions,
examples, and context matter.
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Lecture

Advanced Econometrics

0. What is Econometrics?
1. Review of Matrix Algebra
1.1 Relationships Between Variables
1.2 Matrix Fundamentals
1.3 Quadratic Forms & Definiteness
1.4 Mixing Matrices, Vectors & Summation
1.5 Applications in Econometrics

5/7



What is Econometrics?

“Three viewpoints, that of statistics, economic theory, and
mathematics, [are] a necessary, but not by [themselve] a
sufficient, condition for a real understanding of the quantitative
relations in modern economic life. It is the unification of all
three that is powerful. And it is this unification that constitutes
econometrics.”

First issue of Econometrica, Ragnar Frisch (1933)

... and most recently of machine learning
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What is Econometrics?

An economic model of consumption: Keynes’s Consumption
Function
» We shall therefore define what we shall call the propensity
to consume as the functional relationship f between X, a
given level of income, and C, the expenditure on
consumption out of the level of income, so that C = f(X).
» The fundamental psychological law upon which we are
entitled to depend with great confidence, both a priori from
our knowledge of human nature and from the detailed
facts of experience, is that men are disposed, as a rule and
on the average, to increase their consumption as their
income increases, but not by as much as the increase in
theirincome. That is, . .. dC/dX = f is positive and less
than unity.
An econometric model of consumption
> C=a+ X5
> 0<pf<l,a>0
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Keynes’s Consumption Function
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What is Econometrics?

Contributions often awarded

» Ragnar Frisch in 1969, Lawrence Klein in 1980,
Trygve Haavelmo in 1989,
James Heckman and Daniel McFadden in 2000, and
Robert Engle and Clive Granger in 2003

>
>
>
» Lars Peter Hansen (with R. Shiller and E. Fama) in 2013
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What is Econometrics?

...and in 2021 Card, Angrist und Imbens:
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What is Econometrics?

Two specializations
» Theoretical econometrics
» Applied econometrics
Special focus
» Macroeconometrics
» Forecasting

» Microeconometrics
(Causal inference, cross sectional, panel/longitudinal
analysis)
...tools heavily used in academia and by practitioners.
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1.1: Relationships Between Two Variables




What is the Relationship between Two Variables?

The multiple linear regression model assumes a linear (in
parameters) relationship between a dependent variable y; and a
set of explanatory variables xj, X1, . . . , XK.

X is also called

» an independent variable,
> a covariate or

> aregressor.
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What is the Relationship between Two Variables?

The first regressor x;; = 1 is a constant unless otherwise
specified.

Consider a sample of N observations on individuals
i=1,...,N.Every single observation i follows in the multiple
regression model

Yi = Bo + BiXin + ... + BkXik + Uj,

where By, 31,. .., Bk are K+ 1 parameters and u; is called the
error term.
In more concise matrix notation

= X + u
N}>:1 NX(K+1)(K+I?)><1 Nx1

The bivariate regression model is a special case with only one
regressor:

Yi = Bo + Bixi + u.
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1.2: Matrix Fundamentals




Matrix fundamentals

A— di1 aiz2 ais
dg1 d22 a3

» A matrix is a rectangular array of numbers.

» Size: (rows)x(columns). E.g. the size of Ais 2x 3.

» The size of a matrix is also known as the dimension.

» The element in the ith row and jth column of A is referred to
as ajj.

» The matrix A can also be written as A = (a;).
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Matrix addition and subtraction

bll b12 b13

dip dai2 ais
A= ‘B =
[ }’ [b21 bas b23]

do1 a2 a3

Matrix Addition and Subtraction

» Dimensions must match:
(r xle)£(r xe) = (r xle)

» A and B are both 2x 3 matrices, so

a1 +bi1 aiz+bia aiz+bis

A+B=
@1 +bo1 @z +bay @sz+ bas

» More generally we can write:

A +B = (a;) + (by)
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Matrix multiplication

dii di2

d;; apz2 ais
A= [321 dgg Q23 iD= ldn dx
ds3i  dzo

Matrix Multiplication

» Inner dimensions need to match:

(rxcmcxp):(rxp)

» Aisa2 x 3andDisa3x2 matrix, so the inner dimensions
match and we have:C = A x D =

a11d11 + @12da1 + a@13ds1  @11d12 + @122z + @13ds30
a21d11 + 822021 + @23d31 821012 + 22022 + 23030

» Look at the pattern in the terms above.
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Matrix multiplication

C12

€22

|[C=AD:2x2
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|dentity matrix

» An identity matrix is the matrix analogue of the number 1.

» If you multiply any matrix (or vector) with a conformable
identity matrix the result will be the same matrix (or vector).

Example for a 2x2 matrix

ann anz| |1 0
Al =
{321 322] [0 1}
o a1 x1+a;a9x0 ajp x0+a0 x1
a @s1 X 1 +a@92 x0 as; x0+4ag x1

__|a11 a2 —A
dg1 a2
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Vectors are matrices with only one row or column. For example,
the column vector:

X1 1

X 1
X=1.1: 1=

Xn 1

Transpose Operator

. Turns columns into rows (and vice versa):

X=x'"=x X2 ... xp

Sidenote: Sum of Values and Squares

n n n
. 1,0 1 _ , 5
ix=>"x; Six=23"x=%  Xx=) X
: n n - :
i=1 =1 =1
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Transpose

Say we have some m x n matrix:

di1 a2 din
dz1 A aon
ami am2 amn

Transpose Operator

» Flips the rows and columns of a matrix:

A’ = (aj)

» The subscripts gets swapped.
» A’is an x m matrix: the columns in A are the rows in A’.
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Square Matrix

A matrix, P is square if it has the same number of rows as
columns. l.e.
dm(P)=nxn

for somen > 1.

Symmetric Matrix

. A square matrix, P is symmetric if it is equal to its transpose:

P—P
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The determinantdet(A) of a square matrix A is a scalar
computed from its entries that measures how the associated
linear map scales volume and whether it preserves or flips
orientation.

> It is zero exactly when the matrix is not invertible.

» det(A) #0 <= Aisinvertible <= rows/columns are
linearly independent.

» Row/column swap = sign flips; scaling a row/column by
k = determinant scales by k.

» Adding a multiple of one row/column to another does not
change the determinant.
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Geometric intuition: Determinant as an area

afe =B

» For a2 x 2 matrix, det(A) is the oriented area of the
parallelogram with vertices at
0 = (Oa O)va = (leyl)aa + b = (Xl +X27Y1 +}’2). and b - (X27Y2)-

Yy
b b
Y2 1 at
Y1 a
} + xr
Tro Iy
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Basic computational definition of a determinant

Cofactor expansion (basic idea)

» Let C = (c;) be an n x n square matrix.

» Define a cofactor matrix, Cj, be the determinant of the
square matrix of order (n — 1) obtained from C by removing
row i and column j multiplied by (—1)*.

N
» For fixed j, i.e. focusing on one row: det(C) = Z c;iCjj.
j=1

N
» For fixed j, i.e. focusing on one column: det(C) = Z c;iCi.
i=1

» Note that this is a recursive formula.

» The trick is to pick a row (or column) with a lot of zeros (or
better yet, use a computer)!
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2 x 2 Determinant

Apply the general formula to a 2 x 2 matrix: C = [

>

>

>

C11 012}
Co1 Co2
Keep the first row fixed, i.e. seti = 1.

2
General formula wheni=1and N = 2: det(C) = Z c1;Cyj
j=1

When j = 1, Cy; is one cofactor matrix of C, i.e. the
determinant after removing the first row and first column
of C multiplied by (—1) = (-1). So

Cll = (—1)2det(C22) = C99

as cy9 is a scalar and the determinant of a scalar is itself.
Cio = (—1)3det(C21) = —C9y1 AS Coy is a scalar and the
determinant of a scalar is itself.

Put it all together and you get the familiar result:

det(C) = ¢11C11 + €12C12 = €11C22 — C12C21
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3 x 3 Determinant

bll b12 b13
B = b21 b22 b23 .

b31 b32 b33
> Keep the first row fixed (i = 1):

det(B) = b11B11 + b12B12 + b13B;s.

b b b b
> Example: Byp = (—1)12 |20 /23 = | 72b 08
ple: Biz = (~1) bs1 b33 bs1  bs3
_ b22 b23 b21 b23 b21 b22
> det®) =bui |y by “P12 by by TP by by
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Sarrus’ scheme for the determinantofa 3 x 3

» French mathematician: Pierre Frédéric Sarrus (1798-1861)

bi1 b1z biz
det(B) = |ba1 bay boz| = by 222 223 —bys 221 g23 13 221 222
bsi bs> bss o o o

= (b11b22bss + b12b23bs1 + b13ba1b3a)—(b13basbst + b11bagbss + biobaibss)

bii bia b3 b bi Write the first two columns of the
NG U matrix again to the right of the original
bay by P Bip B3 matrix. Multiply the diagonals

'Y Y . . . together and then add or subtract.
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Inverting Matrices

Inverse

» Requires a square matrix i.e. dimensions: r x r

> Fora?2 x 2 matrix, A = |11 @12
do1 a2

1 axp —ap

det(A) |—a2z1 an

» More generally, a square matrix A is invertible or
nonsingular if there exists another matrix B such that

AB =BA =1

» If this occurs then B is uniquely determined by A and is
denoted A™!,i.e. AA"L = 1.
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Rank

» The rank of a matrix A is the maximal number of linearly
independent rows or columns of A.

» A family of vectors is linearly independent if none of them
can be written as a linear combination of finitely many
other vectors in the collection.

Example: A tyical dummy variable trap

Vi Vo vz vy| =

— = e
S O = =
o~ oo
—_ o oo

V1, Vs and vs are independent but vy = v; — vy — v3.
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» The maximum rank of an m x n matrix is min(m, n).

» A full rank matrix is one that has the largest possible rank,
i.e. the rank is equal to either the number of rows or
columns (whichever is smaller).

» In the case of an n x n square matrix A, then A is invertible
if and only if A has rank n (that is, A has full rank).
» For some n x k matrix with k < n, X, rank(X) = rank(X'X)

» If you use dummy variables, you need to drop one of the
dummy categories otherwise X is not of full rank and
therefore you cannot find the inverse of X'X. This is why the
dummy variable trap exists.
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Trace

Trace of a Matrix

The trace of an n x n matrix A is the sum of the elements on the

n
main diagonal: tr(A) = a1 + @ + ... + any = Za,-,-.
i=1

> tr(A+B) =1r(A) + tr(B)
> tr(cA) = ctr(A)
» If Aisan m x n matrix and B is an n x m matrix then
tr(AB) = tr(BA)
» More generally, for conformable matrices:
tr(ABC) = tr(CBA) = tr(BCA)

BUT: tr(ABC) = tr(ACB). You can only move from the front to the
back (or back to the front)!
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ldempotent

Idempotent

A square matrix, P is idempotent if when multiplied by itself,
yields itself. l.e.
PP =P.

1. When an idempotent matrix is subtracted from the identity
matrix, the result is also idempotent,ie. M =1—-Pis
idempotent.

2. The trace of an idempotent matrix is equal to the rank.
3. X(X'X)~1X' is an idempotent matrix.
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Order of operations

» Matrix multiplication is non-commutative, i.e. the order of
multiplication is important: AB = BA.

» Matrix multiplication is associative, i.e. as long as the order
stays the same, (AB)C = A(BC).

» AB+C)=AB+AC

» (A+B)C=AC+BC

Example: Order

. Let A be a k x k matrix and x and ¢ be k x 1 vectors:

Ax = ¢
A 'Ax = A'c (PRE-multiply both sides by A™!)
x = Alc
x = Alc

Note: A 'c #cA™!
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Matrix Differentiation

If 3 and a are both k x 1 vectors, then

0F'a _
op
B'=0B B2 ... ,Bk);aIZ (a1 a2 ... a)
%(ﬁ/a) = 3 (/5’161 + Bods + ... + Beak)
8(2 (Bra1 + Beaz + ... + Brak)
_ a5 = (0181 + Baaz + ... + Brak)

) :
_6—&((/3131 + foaz+ ...+ ,Bkak)_

= a.
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Matrix Differentiation

Let 3 be ak x 1 vector and A be a k x k symmetric matrix, then

0B'AB B
B 2A0.
Say 3 = (gl) and A = (:;1 :;z)then
%(HA,B) 3,5 (ﬁlan +2a1261 52 + 52322)

o (51311 +2a1261 52 + 52322)

——(B%ay; + 2a1281 82 + Biass)
0532
[Qﬁlan + 2812/32]

2031a12 + 2a2202
— 2AB.
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Matrix Differentiation

Let 3 be ak x 1 vector and A be a n x k matrix, then

Say 8 =

0

op

(/9’1
p

(AB) =

OAB

and A = (&1 a”),then
do1 A

A.

L9505,

0 [31151 + 31252}
op

as131 + asfs
0 0

95 9% (@111 + ai2f2)
0 0

(@211 + @)

0 (@111 +ai2fz)
88[3’2

0>

82 (@1181 + aizf)

|95, (82101 + a22/32)

(32151 + a22/32)
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Eigenvalues

» An eigenvalue )\ and an eigenvector x # 0 of a square
matrix A is defined as

AX = \x.

» Since the eigenvector x is different from the zero vector
(i.e. x # 0) the following is valid:

(A= X)x =0 — det(A—Al) =0.

» We know det(A — Al) = 0 because:

> if (A — \I)~! existed, we could just pre-multiply both sides
by (A — Al)~! and get the solution x = 0.

> but we have assumed x # 0 so we require that (A — Al) is
NOT invertible which implies’ that det(A — Al) = 0.

» To find the eigenvalues, we can solve det(A — A\l) = 0.
A matrix is invertible if and only if the determinant is non-zero.
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Eigenvalues

Example: Finding eignevalues

.Say A = E ;] . We can find the eigenvalues of A by solving
det(A—Al) = 0
2 1 1 0
([t ) -
2—A 1
’ 1 2/\‘ -0
2-M2-N)—-1x1 = 0
AN —4r+3 = 0

A—1)(A=3) = 0

The eigenvalues are the roots of this quadratic: A\; = 1 and X\ = 3.
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Why do we care about eigenvalues?

» Ann x n matrix A is positive definite if all eigenvalues of A,
A1, A2, ..., \p are positive.

» A matrix is negative-definite, negative-semidefinite, or
positive-semidefinite if and only if all of its eigenvalues are
negative, non-positive, or non-negative, respectively.

» The eigenvectors corresponding to different eigenvalues
are linearly independent. So if a n x n matrix has n nonzero
eigenvalues, it is of full rank.

» The trace of a matrix is the sum of the eigenvectors:
tr(A) =X+ X +...+ A\

» The determinant of a matrix is the product of the
eigenvectors: det(A) = A\ Az2... \p.

» The eigenvectors and eigenvalues of the covariance matrix
of a data set data are also used in principal component
analysis (similar to factor analysis).
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1.3: Quadratic Forms & Definiteness




Quadratic forms

» A quadratic form on R" is a real-valued function of the form

Q(x1,...,X Za,jx,xj

» E.g.in R we have Q(x1,X2) = a11x1 + @12X1X2 + @22X5.
» Quadratic forms can be represented by a symmetric matrix

A such that:
Q(x) = x'Ax
> E.g.if x = (x1,x2), then
ajr  zAai2
a0 = x|y 2N ()
5312 das 2

1 2
—(@12 + a@21)X1X2 + az2X;

= alle + 5
(1)

but A is symmetric, i.e. a;2 = as;, SO we can write 20,71



Quadratic forms

If x € R3,i.e. x = (x1, X2, Xx3)’, then the general three dimensional
quadratic form is:

Q(x) = xAx
ar 5312 ¥313 X1
= (Xl X2 X3) —ajio ag 5823 X2
1 X3
5313 5323 ass
= all)(% + 822X§ + 333X§ + @12X1X2 + @13X1X3 + @23X2X3

(2)

Quadratic Forms and Sum of Squares

Recall sums of squares can be written as x'x and quadratic
forms are x’Ax. Quadratic forms are like generalised and
weighted sum of squares. Note that if A = I then we recover the

sums of squares exactly. o



Definiteness of quadratic forms

> A quadratic form always takes on the value zero at the
point x = 0. This is not an interesting result!

» For example, if x € R, i.e. x = x; then the general quadratic
form is ax? which equals zero when x; = 0.

» Its distinguishing characteristic is the set of values it takes
when x # 0.
» We want to know if x = 0 is a max, min or neither.
» Example: when x € R, i.e. the quadratic form is axf,
a > 0 means ax?> > 0 and equals 0 only when x = 0.
Such a form is called positive definite; x = 0 is
a global minimiser.
a < 0 means ax?> < 0 and equals 0 only when x = 0.
Such a form is called negative definite; x = 0
is a global maximiser.
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Positive definite

IfA = ((1) (1)) then Q;(x) = X'Ax = X7 + x3.

> Q, is greater than zero at x # 0 i.e. (x1,X2) # (0,0).
» The point x = 0 is a global minimum.
> Q is called positive definite.
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Negative definite

IfA= <_01 _01) then Q2(x) = X Ax = —x} — x3.

> Q is less than zero atx # 0 i.e. (x1,Xx2) # (0,0).
» The point x = 0 is a global maximum.
> Q. is called negative definite.
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If A= ((1) _01> then Q3(x) = X'Ax = X3 — x3.

> Q3 can be take both positive and negative values.
» E.g.Q3(1,0) = +1and Q3(0,1) = —1.
» Qs is called indefinite.
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Positive semidefinite

If A= G 1) then Q4 (x) = X'Ax = x} + 2x;x2 + X3.

» Qg is always > 0 but does equal zero at some x # 0.
» E.g. Q4(10,—10) = 0.
» Q is called positive semidefinite.

400
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Negative semidefinite

If A = <:i _11) then Qs(x) = X' Ax = —(x; + X2)*.

» Qs is always < 0 but does equal zero at some x # 0.
» E.g. Q5(10,—10) = 0.
> Qs is called negative semidefinite.
0
-100

-200

(3)5(x1 ,x2)

-300
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Definite symmetric matrices

A symmetric matrix, A, is called positive definite, positive
semidefinite, negative definite, etc. according to the
definiteness of the corresponding quadratic form Q(x) = x'Ax.
Let A be an x n symmetric matrix, then A is

1. positive definite if X Ax > 0 for all x # 0 in R"
positive semidefinite if X Ax > 0 for all x # 0 in R"
negative definite if X Ax < 0 for all x # 0 in R"
negative semidefinite if ¥ Ax < 0 forall x # 0inR"

indefinite if X’ Ax > 0 for some x # 0in R" and < 0 for
some other x in R"

a > e

» We can check the definiteness of a matrix by showing that
one of these definitions holds as in the example

» You can find the eigenvalues to check definiteness
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How else to check for definiteness?

You can check the sign of the sequence of determinants of the
leading principal minors:

Positive Definite

. An n x n matrix M is positive definite if all the following
matrices have a positive determinant:

» the top left 1 x 1 corner of M (1st order principal minor)
» the top left 2 x 2 corner of M (2nd order principal minor)

> M itself.
In other words, all of the leading principal minors are positive.

Negative Definite

. A matrix is negative definite if all kth order leading principal
minors are negative when k is odd and positive when k is even.
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Why do we care about definiteness?

Useful for establishing if a (multivariate) function has a
maximum, minimum or neither at a critical point.
» If we have a function, f(x), we can show that a minimum
exists at a critical point, i.e. when f'(x) = 0, if f/(x) > 0.

Positive Definite

f(x) = 2x°.
> f(x) = 4x
> f(x)=0 — x=0
» f'(x)=4>0 — minimumatx=0.
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Why do we care about definiteness?

» In the special case of a univariate function f’(x)isa1 x 1
Hessian matrix and showing that /(x) > 0 is equivalent to
showing that the Hessian is positive definite.

» If we have a bivariate function f(x, y) we find critical points
when the first order partial derivatives are equal to zero:

1. Find the first order derivatives and set them equal to zero
2. Solve simultaneously to find critical points

» We can check if max or min or neither using the Hessian

matrix, H, the matrix of second order partial derivatives:

fux fxy}
H=
[fyx fyy

1. (If necessary) evaluate the Hessian at a critical point
2. Check if H is positive or negative definite:
> |H| >0andf,x >0 — positive definite — minimum
> |H| >0andf;x <0 — negative definite — maximum
3. Repeat for all critical points
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Why do we care about definiteness?

» If we find the second order conditions and show that itis a
positive definite matrix then we have shown that we have a
minimum.

> Positive definite matrices are non-singular, i.e. we can
invert them. So if we can show X'X is positive definite, we
can find [X'X]~1.

» Application: showing that the Ordinary Least Squares
(OLS) minimises the sum of squared residuals.
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Matrices as systems of equations

» A system of equations:

yi = X11b1 +X12b2+ +X1kbk
Yo = X21b1 + X22b2 4+ ...+ ngbk
Yn = Xp1b1 + Xnabo + . .. +Xnkbk
3
» The matrix form:
y1 X11 X2 ... Xi| (b1
Yaf  [Xar X2 ... Xok by
Yn Xn1 Xn2 ... Xpk| | DBk

(4)
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Matrices as systems of equations

» More succinctly: y = Xb where

Y1 by Xi1

b X;

y= y.2 i b= .2 ;X = .
Yn by Xik

fori=1,2,...,nand

X11 X12 ... Xik X3
/
X21 Xo2 ... Xok X
x = . =
!
Xn1 Xn2 ... Xpk X,

> X; is the “covariate vector” for the ith observation.
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Matrices as systems of equations

» We can writey = Xb as

Y1 X
/

Y2 X5

| =1"1b.
/

yn xn

» Returning to the original system, we can write each
individual equation using vectors:

y1=xb
Y2 = X;b
Yn = X,b.
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1.4: Mixing Matrices, Vectors & Summation




Mixing matrices, vectors and summation notation

Often we want to find X'X or X'u. A convenient way to write this
is as a sum of vectors. Say we have a 3 x 2 matrix X:

/
X11 X12 X1 r ux
_ I _ X . _
X=|Xo1 Xof = [X3]; X = X},and u= (U
/ i2
X31 X32 X3 - us
We can write,
1 | X11 X12
X11 Xo1 X
XX — 11 X21 X31 Xo1  Xoo
X12 X222 X33
- [X31 X32
X
/
= [x1 X2 x3] |X}
X;

= X1X| + XX + X3Xj

3
= > xx.
i=1
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Mixing matrices, vectors and summation notation

3
In a similar fashion, we can also show that X'u = Zx,-ui.
i—1

X11 Xo1 X U1

Xu — 11 X21 X31 Uy
X12 Xo2 X33

us

_[X11Up + X21U2 + X31U3
X12U1 + X22U2 + X32U3
= XyU1 + XoU2 + X3U3

3
= Z X;U;.
i=1
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1.5: Applications in Econometrics




Application: variance-covariance matrix

> For the univariate case, var(y) = E([y — u]?).
» In the multivariate casey is a vector of n random variables.

» Without loss of generality, assume y has mean zero, i.e.
E(y) = u = 0. Then,

cov(y,y) = var(y) =E(ly — plly — pl)

y1
Y2
= E( : yi y2 ... Yn]>
Yn
Y Yo .. Yiva
- Yay1 y% ceo Yo¥Yn

VoY1 YnYo .. Y2
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Application: variance-covariance matrix

» Hence, we have a variance-covariance matrix:

var(y:) cov(yi,y2) ... cov(yi,yn)

cov(ya,y1) var(ya) ... cov(y2,yn)
var(y) = . . .

cov(Yn,¥1) COV(Yn,Y2) ... var(yn)

» What if we weight the random variables
with a vector of constants, a?

var(a'y) = E([ay-a'plfa'y—a'y])
= E(@[y - pl@[y —nl))
= E(@[y - plly — pfa)
= aE(ly - plly — p))a
= a'var(y)a.

59/71



Application: variance of sums of random variables

Lety = (y1,y2) be a vector of random variables and
a = (a1,a2)’ be some constants,

a'y = [al 32} L}g] =aiy1 + azyo.

Now, var(a1y; + asy») = var(a'y) = a'var(y)a where

_ | var(yr)  cov(yr,y2)
var(y) = [COV(Y1,1Y2) var(;2)2 }

is the (symmetric) variance-covariance matrix.

var(a'y) = avar(y)a

var(y;)  cov(yi,y2)] [a1
= [a a [COV(YLYZ) var(yz) ][aj

= ajvar(y,) + a3var(ys) + 2aiascov(y;, yo)
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Application: Standardizing a Univariate Normally Distributed Vector

u=12
o=7
w=-45

o=10
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Standardizing a Bivariate Normal Distribution

Is this also true for multivariate (e.g. bivariate) normal vectors?

&

PDF bivariate normal

The example shows a bivariate normal distribution of £ and v with density

_ 1 1 2 2 . _
fle,v) = T exp (—2(1 ey (e —2pev+v )) with N = 1000,
o = 0, = 1,and p = 0.8. The graph was produced using the ado file graph3d.
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Application: Standardizing a Normally Distributed Vector

Consider the vector of random variables y that is normally
distributed with expectation . and covariance matrix X:

y ~ N[, X].
Show that the standardized vector
£Y2(y — p) =z ~ N[0, 1.

Let's weight the random variable in z = y — p with a symmetric
matrix X 71/2,

E(x1%z) = 2712E(z) = 0.

Var(2~1/2z) = 2~ 12mn-12 = |,
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Application: Standardizing a Normally Distributed Vector

Bivariate vector y = @1) with p = 1L,y = 1,9 = 8,02 = 13,
2

(Y1> N{ <M1> ( 0’% P0102> }
~ ) 2
Y2 2 poi102 05

Show that E(27/22) = =~ /2E(z) = 0

e £ (1) = (§)

Drawing two values of y] = —1,y? =3 and y} = 6,y3 = 10

E(z )_1/2(61 81)+1/2<130 18) (8)

o =
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Application: OLS

Given a linear model y = X3 + u derive the OLS estimator 3.
Show that 3 achieves a minimum.

» The OLS estimator 8 minimises the sum of squared
residuals,

n
vu=> ulwhereu=y—Xgoru =y —x3.

i=1

n

SB)=> i—xB)° = (y—XB)'(y—X8)

i=1

= yy-2¥X8+BXX3
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Multiplying (y — X3)'(y — X3) out

.= (XB)y—y'XB3...
= (y'XBY—-Yy X B ..
1xn NXKkx 1 Txnnxkix 1
Recall that for a symmetric matrix (y'X3)" = (y'X3)
=2 XB. ..

- et g

. —BXy—yX3...
o Yl A J0H -

L= 2XB

=0 Al 35

-2 % ((O.5><2+2><3)><1+(0.5><1+2><0)><2>:—16
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Application: OLS

> Recall

S(B) = Z(y,- —xiB)? = (y—XB)(y—XB)
= yYy-2¥X3+BXX3

> Take the first derivative of S(3) and set it equal to zero:

9S(8)
B

» Assuming X (and therefore X'X) is of full rank (so is X'X
invertible) we get,

— X'y + 2X'XB = 0 — X'X3 = Xy.

B = (XX)"XYy.
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Application: OLS

» For a minimum we need to use the second order
conditions:
9°S(B)

0Bo3
» The solution will be a minimum if X'X is a positive definite
matrix. Let g = ¢’X'Xc for some ¢ # 0. Then

=2X'X.

n
g=vv=> v, wherev=Xc.
i=1

» Unless v = 0, g is positive. But, if v = 0 then v or ¢ would be
a linear combination of the columns of X that equals 0
which contradicts the assumption that X has full rank.
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Application: OLS

» Since c is arbitrary, q is positive for every ¢ # 0 which
establishes that X'X is positive definite.

» Therefore, if X has full rank, then the least squares solution
(3 is unique and minimises the sum of squared residuals.
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Matrix Operations

Operation R Stata Mata Matlab Python
A= [150 g] A=matrix(c(57,10,2),  matA=(57\10,5)  A=(57\105) A=[57;102] A = np.array(([5,
ncol=2,byrow=T) 71,110, 511)
rxr
identity matrix I diag(1,r) mat | = 1(r) I(r) eye(r) np.eye(r)
At solve(A) mat C = inv(A) invsym(A) inv(A) np.linalg.inv(A)
A+B A+B matC=A+B A+B A+B np.add(A,B)
AB A %*% B mat D = A*B A*B A*B np.multiply(A,B)
A (A) mata=A A A AT
Kronecker product  kronecker.prod(A, B) mat b = A#B A#B A=1[5710,2] np.kron(A, B)

of Aand B
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Matrix Functions

Function R Stata Mata Matlab Python
eigenvalues of A &  eigen(A) matrix  eigenva-  eigenvalues(A) [V,E] = eig(A) np.linalg.eig(A)
eigenvectors luesrc=A

var(A) or
covariance matrix cov(A) mat r= corr(A) corr(A) cov(A) np.cov(A)
rank(A) qr(A)Srank - rank(A) rank(A) np.linalg.matrix_rank(A
det(A) det(A) scalar det = det(A)  det(A) det(A) np.linalg.det(A)
vectorize A b=c(A) mat b = vec(A) vec(A) A =1[5710,2] np.vectorize(A)
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