
Advanced Econometrics
01 Review of Matrix Algebra

Eduard Brüll
Fall 2025



Course Structure
Main Lectures
▶ Tue & Thu 10:15–11:45

O129 (Tue), O048 (Thu)
Dates: Oct 7 – Dec 4, 2025

Computer Sessions
▶ Wed 15:30–17:00

L7, 3–5, Room 358
Dates: Oct 8 – Dec 3, 2025

Exercises / Tutorials
▶ Fri 10:15–11:45

O048 (Schloss Ostflügel)
Dates: Oct 10 – Dec 5, 2025

▶ Collect bonus points: Hand-in exercises
(counts for grade in final exam)

▶ Effort counts
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Assessment, Materials & Instructors

Assessment

▶ Written exam in late Dec 2025
If everything works out: 16.12.2025
Second exam: early Feb 2026

Materials

▶ Main reference: Greene, Econometric Analysis, 7th edition

▶ Additional readings and datasets available on ILIAS

Instructors

▶ Eduard Brüll — Eduard.Bruell@zew.de

▶ Mishelle Segui — mishelle.segui@uni-mannheim.de

▶ Jan Kemper — jan.kemper@zew.de
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Overview of Topics

Review and Foundations
▶ Review of Matrix Algebra
▶ Probability and Distribution Theory

Estimation Techniques
▶ Linear Regression Model and OLS
▶ Maximum Likelihood Estimation
▶ General Method of Moments (GMM)

Applications and Extensions
▶ Time Series Models
▶ Models for Panel Data
▶ Difference-in-Differences and Event Studies
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Remarks on Readings

Main reference:
Greene, Econometric

Analysis
7th edition

▶ Lecture serves as a guideline. The order
of topics may differ from Greene.

▶ Greene is a modular book.

+ Advantage: Excellent reference.
– Downside: Dense; more detail than

one can digest on a first read.

▶ Get a “second opinion” from Greene on
each topic covered in lecture.

▶ Take note of material not discussed in
class. It helps to know what you don’t
know.

▶ Lectures emphasize the essential and
sometimes “ugly” parts. Don’t skip the
“nice” parts in Greene: Introductions,
examples, and context matter.
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Advanced Econometrics

0. What is Econometrics?
1. Review of Matrix Algebra

1.1 Relationships Between Variables
1.2 Matrix Fundamentals
1.3 Quadratic Forms & Definiteness
1.4 Mixing Matrices, Vectors & Summation
1.5 Applications in Econometrics

5 / 71



What is Econometrics?

“Three viewpoints, that of statistics, economic theory, and
mathematics, [are] a necessary, but not by [themselve] a
sufficient, condition for a real understanding of the quantitative
relations in modern economic life. It is the unification of all
three that is powerful. And it is this unification that constitutes
econometrics.”

First issue of Econometrica, Ragnar Frisch (1933)

... and most recently of machine learning
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What is Econometrics?
An economic model of consumption: Keynes’s Consumption
Function
▶ We shall therefore define what we shall call the propensity

to consume as the functional relationship f between X, a
given level of income, and C, the expenditure on
consumption out of the level of income, so that C = f(X).

▶ The fundamental psychological law upon which we are
entitled to depend with great confidence, both a priori from
our knowledge of human nature and from the detailed
facts of experience, is that men are disposed, as a rule and
on the average, to increase their consumption as their
income increases, but not by as much as the increase in
their income. That is, . . . dC/dX = β is positive and less
than unity.

An econometric model of consumption
▶ C = α+ Xβ
▶ 0 < β < 1, α > 0
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Keynes’s Consumption Function
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What is Econometrics?

Contributions often awarded
▶ Ragnar Frisch in 1969, Lawrence Klein in 1980,
▶ Trygve Haavelmo in 1989,
▶ James Heckman and Daniel McFadden in 2000, and
▶ Robert Engle and Clive Granger in 2003
▶ Lars Peter Hansen (with R. Shiller and E. Fama) in 2013
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What is Econometrics?

...and in 2021 Card, Angrist und Imbens:
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What is Econometrics?

Two specializations
▶ Theoretical econometrics
▶ Applied econometrics

Special focus
▶ Macroeconometrics
▶ Forecasting
▶ Microeconometrics

(Causal inference, cross sectional, panel/longitudinal
analysis)

...tools heavily used in academia and by practitioners.
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1.1: Relationships Between Two Variables



What is the Relationship between Two Variables?

The multiple linear regression model assumes a linear (in
parameters) relationship between a dependent variable yi and a
set of explanatory variables xi0, xi1, . . . , xiK.
xik is also called
▶ an independent variable,
▶ a covariate or
▶ a regressor.
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What is the Relationship between Two Variables?

The first regressor xi0 = 1 is a constant unless otherwise
specified.
Consider a sample of N observations on individuals
i = 1, . . . ,N. Every single observation i follows in the multiple
regression model

yi = β0 + β1xi1 + . . .+ βKxiK + ui,

where β0, β1, . . . , βK are K+ 1 parameters and ui is called the
error term.
In more concise matrix notation

y
N×1

= X
N×(K+1)

β
(K+1)×1

+ u
N×1

The bivariate regression model is a special case with only one
regressor:

yi = β0 + β1xi + ui.
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1.2: Matrix Fundamentals



Matrix fundamentals

A =

[
a11 a12 a13
a21 a22 a23

]
▶ A matrix is a rectangular array of numbers.
▶ Size: (rows)×(columns). E.g. the size of A is 2× 3.
▶ The size of a matrix is also known as the dimension.
▶ The element in the ith row and jth column of A is referred to

as aij.

▶ The matrix A can also be written as A = (aij).

14 / 71



Matrix addition and subtraction

A =

[
a11 a12 a13
a21 a22 a23

]
;B =

[
b11 b12 b13
b21 b22 b23

]

Matrix Addition and Subtraction

▶ Dimensions must match:

▶ A and B are both 2× 3 matrices, so

A+ B =

[
a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23

]
▶ More generally we can write:

A± B = (aij)± (bij)
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Matrix multiplication

A =

[
a11 a12 a13
a21 a22 a23

]
;D =

d11 d12
d21 d22
d31 d32


Matrix Multiplication

▶ Inner dimensions need to match:

▶ A is a 2 × 3 and D is a 3×2 matrix, so the inner dimensions
match and we have: C = A× D =[

a11d11 + a12d21 + a13d31 a11d12 + a12d22 + a13d32

a21d11 + a22d21 + a23d31 a21d12 + a22d22 + a23d32

]
▶ Look at the pattern in the terms above.
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Matrix multiplication
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Identity matrix

▶ An identity matrix is the matrix analogue of the number 1.
▶ If you multiply any matrix (or vector) with a conformable

identity matrix the result will be the same matrix (or vector).

Example for a 2×2 matrix

.
AI =

[
a11 a12
a21 a22

] [
1 0
0 1

]
=

[
a11 × 1 + a12 × 0 a11 × 0 + a12 × 1
a21 × 1 + a22 × 0 a21 × 0 + a22 × 1

]
=

[
a11 a12
a21 a22

]
= A.
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Vectors
Vectors are matrices with only one row or column. For example,
the column vector:

x =


x1
x2
...
xn

 ; i =


1
1
...
1


Transpose Operator
. Turns columns into rows (and vice versa):

x′ = xT = [x1 x2 . . . xn]

Sidenote: Sum of Values and Squares
.

i′x =

n∑
i=1

xi;
1

n
i′x =

1

n

n∑
i=1

xi = x̄; x′x =

n∑
i=1

x2i
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Transpose

Say we have some m× n matrix:

A = (aij) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn



Transpose Operator

▶ Flips the rows and columns of a matrix:

A′ = (aji)

▶ The subscripts gets swapped.
▶ A′ is a n×m matrix: the columns in A are the rows in A′.
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Symmetry

Square Matrix

A matrix, P is square if it has the same number of rows as
columns. I.e.

dim(P) = n× n

for some n ≥ 1.

Symmetric Matrix

. A square matrix, P is symmetric if it is equal to its transpose:

P = P′
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Determinant

The determinantdet(A) of a square matrix A is a scalar
computed from its entries that measures how the associated
linear map scales volume and whether it preserves or flips
orientation.
▶ It is zero exactly when the matrix is not invertible.
▶ det(A) ̸= 0 ⇐⇒ A is invertible ⇐⇒ rows/columns are

linearly independent.
▶ Row/column swap ⇒ sign flips; scaling a row/column by

k ⇒ determinant scales by k.
▶ Adding a multiple of one row/column to another does not

change the determinant.
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Geometric intuition: Determinant as an area

A =

[
x1 y1
x2 y2

]
=

[
a
b

]
.

▶ For a 2× 2 matrix, det(A) is the oriented area of the
parallelogram with vertices at
0 = (0, 0), a = (x1, y1), a+ b = (x1 + x2, y1 + y2), and b = (x2, y2).
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Basic computational definition of a determinant

Cofactor expansion (basic idea)

▶ Let C = (cij) be an n× n square matrix.
▶ Define a cofactor matrix, Cij, be the determinant of the

square matrix of order (n− 1) obtained from C by removing
row i and column j multiplied by (−1)i+j.

▶ For fixed i, i.e. focusing on one row: det(C) =
N∑

j=1

cijCij.

▶ For fixed j, i.e. focusing on one column: det(C) =
N∑

i=1

cijCij.

▶ Note that this is a recursive formula.
▶ The trick is to pick a row (or column) with a lot of zeros (or

better yet, use a computer)!
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2× 2 Determinant

Apply the general formula to a 2× 2 matrix: C =

[
c11 c12
c21 c22

]
.

▶ Keep the first row fixed, i.e. set i = 1.

▶ General formula when i = 1 and N = 2: det(C) =
2∑

j=1

c1jC1j

▶ When j = 1, C11 is one cofactor matrix of C, i.e. the
determinant after removing the first row and first column
of C multiplied by (−1)i+j = (−1)2. So

C11 = (−1)2det(c22) = c22

as c22 is a scalar and the determinant of a scalar is itself.
▶ C12 = (−1)3det(c21) = −c21 as c21 is a scalar and the

determinant of a scalar is itself.
▶ Put it all together and you get the familiar result:

det(C) = c11C11 + c12C12 = c11c22 − c12c21
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3 × 3 Determinant

B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 .

▶ Keep the first row fixed (i = 1):

det(B) = b11B11 + b12B12 + b13B13.

▶ Example: B12 = (−1)1+2

∣∣∣∣b21 b23
b31 b33

∣∣∣∣ = −
∣∣∣∣b21 b23
b31 b33

∣∣∣∣ .
▶ det(B) = b11

∣∣∣∣b22 b23
b32 b33

∣∣∣∣− b12
∣∣∣∣b21 b23
b31 b33

∣∣∣∣+ b13
∣∣∣∣b21 b22
b31 b32

∣∣∣∣ .
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Sarrus’ scheme for the determinant of a 3 × 3

▶ French mathematician: Pierre Frédéric Sarrus (1798–1861)

det(B) =

∣∣∣∣∣∣
b11 b12 b13
b21 b22 b23
b31 b32 b33

∣∣∣∣∣∣ = b11
∣∣∣∣b22 b23
b32 b33

∣∣∣∣−b12
∣∣∣∣b21 b23
b31 b33

∣∣∣∣+b13
∣∣∣∣b21 b22
b31 b32

∣∣∣∣
= (b11b22b33 + b12b23b31 + b13b21b32)−(b13b22b31 + b11b23b32 + b12b21b33)

Write the first two columns of the
matrix again to the right of the original
matrix. Multiply the diagonals
together and then add or subtract.
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Inverting Matrices

Inverse
▶ Requires a square matrix i.e. dimensions: r× r

▶ For a 2× 2 matrix, A =

[
a11 a12
a21 a22

]
,

A−1 =
1

det(A)

[
a22 −a12
−a21 a11

]
▶ More generally, a square matrix A is invertible or

nonsingular if there exists another matrix B such that

AB = BA = I

▶ If this occurs then B is uniquely determined by A and is
denoted A−1, i.e. AA−1 = I.
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Rank

▶ The rank of a matrix A is the maximal number of linearly
independent rows or columns of A.

▶ A family of vectors is linearly independent if none of them
can be written as a linear combination of finitely many
other vectors in the collection.

Example: A tyical dummy variable trap

.

[
v1 v2 v3 v4

]
=


1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1


v1, v2 and v3 are independent but v4 = v1 − v2 − v3.
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Rank

▶ The maximum rank of an m× n matrix is min(m, n).
▶ A full rank matrix is one that has the largest possible rank,

i.e. the rank is equal to either the number of rows or
columns (whichever is smaller).

▶ In the case of an n× n square matrix A, then A is invertible
if and only if A has rank n (that is, A has full rank).

▶ For some n× k matrix with k ≤ n, X, rank(X) = rank(X′X)
▶ If you use dummy variables, you need to drop one of the

dummy categories otherwise X is not of full rank and
therefore you cannot find the inverse of X′X. This is why the
dummy variable trap exists.
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Trace

Trace of a Matrix
The trace of an n× n matrix A is the sum of the elements on the

main diagonal: tr(A) = a11 + a22 + . . .+ ann =

n∑
i=1

aii.

▶ tr(A+ B) = tr(A) + tr(B)
▶ tr(cA) = ctr(A)
▶ If A is an m× n matrix and B is an n×m matrix then

tr(AB) = tr(BA)

▶ More generally, for conformable matrices:

tr(ABC) = tr(CBA) = tr(BCA)

BUT: tr(ABC) ̸= tr(ACB). You can only move from the front to the
back (or back to the front)!
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Idempotent

Idempotent

A square matrix, P is idempotent if when multiplied by itself,
yields itself. I.e.

PP = P.

1. When an idempotent matrix is subtracted from the identity
matrix, the result is also idempotent, i.e. M = I− P is
idempotent.

2. The trace of an idempotent matrix is equal to the rank.
3. X(X′X)−1X′ is an idempotent matrix.
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Order of operations

▶ Matrix multiplication is non-commutative, i.e. the order of
multiplication is important: AB ̸= BA.

▶ Matrix multiplication is associative, i.e. as long as the order
stays the same, (AB)C = A(BC).

▶ A(B+ C) = AB+ AC
▶ (A+ B)C = AC+ BC

Example: Order
. Let A be a k× k matrix and x and c be k× 1 vectors:

Ax = c
A−1Ax = A−1c (PRE-multiply both sides by A−1)

Ix = A−1c
x = A−1c

Note: A−1c ̸= cA−1
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Matrix Differentiation

If β and a are both k× 1 vectors, then

∂β′a
∂β

= a.

β′ =
(
β1 β2 . . . βk

)
; a′ =

(
a1 a2 . . . ak

)
∂

∂β
(β′a) =

∂

∂β
(β1a1 + β2a2 + . . .+ βkak)

=



∂

∂β1
(β1a1 + β2a2 + . . .+ βkak)

∂

∂β2
(β1a1 + β2a2 + . . .+ βkak)

...
∂

∂βk
(β1a1 + β2a2 + . . .+ βkak)


= a.
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Matrix Differentiation
Let β be a k× 1 vector and A be a k× k symmetric matrix, then

∂β′Aβ
∂β

= 2Aβ.

Say β =

(
β1
β2

)
and A =

(
a11 a12
a21 a22

)
, then

∂

∂β
(β′Aβ) =

∂

∂β
(β2

1a11 + 2a12β1β2 + β2
2a22)

=


∂

∂β1
(β2

1a11 + 2a12β1β2 + β2
2a22)

∂

∂β2
(β2

1a11 + 2a12β1β2 + β2
2a22)


=

[
2β1a11 + 2a12β2
2β1a12 + 2a22β2

]
= 2Aβ.
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Matrix Differentiation
Let β be a k× 1 vector and A be a n× k matrix, then

∂Aβ
∂β′ = A.

Say β =

(
β1
β2

)
and A =

(
a11 a12
a21 a22

)
, then

∂

∂β′ (Aβ) =
∂

∂β′

[
a11β1 + a12β2
a21β1 + a22β2

]

=


[

∂

∂β1

∂

∂β2

]
(a11β1 + a12β2)[

∂

∂β1

∂

∂β2

]
(a21β1 + a22β2)


=


∂

∂β1
(a11β1 + a12β2)

∂

∂β2
(a11β1 + a12β2)

∂

∂β1
(a21β1 + a22β2)

∂

∂β2
(a21β1 + a22β2)


= A.
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Eigenvalues

▶ An eigenvalue λ and an eigenvector x ̸= 0 of a square
matrix A is defined as

Ax = λx.

▶ Since the eigenvector x is different from the zero vector
(i.e. x ̸= 0) the following is valid:

(A− λI)x = 0 → det(A− λI) = 0.

▶ We know det(A− λI) = 0 because:
▶ if (A− λI)−1 existed, we could just pre-multiply both sides

by (A− λI)−1 and get the solution x = 0.
▶ but we have assumed x ̸= 0 so we require that (A− λI) is

NOT invertible which implies1 that det(A− λI) = 0.
▶ To find the eigenvalues, we can solve det(A− λI) = 0.
1A matrix is invertible if and only if the determinant is non-zero.
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Eigenvalues

Example: Finding eignevalues

. Say A =

[
2 1
1 2

]
. We can find the eigenvalues of A by solving

det(A− λI) = 0

det
([

2 1
1 2

]
− λ

[
1 0
0 1

])
= 0∣∣∣∣2− λ 1

1 2− λ

∣∣∣∣ = 0

(2− λ)(2− λ)− 1× 1 = 0

λ2 − 4λ+ 3 = 0

(λ− 1)(λ− 3) = 0

The eigenvalues are the roots of this quadratic: λ1 = 1 and λ2 = 3.
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Why do we care about eigenvalues?

▶ An n× n matrix A is positive definite if all eigenvalues of A,
λ1, λ2, . . . , λn are positive.

▶ A matrix is negative-definite, negative-semidefinite, or
positive-semidefinite if and only if all of its eigenvalues are
negative, non-positive, or non-negative, respectively.

▶ The eigenvectors corresponding to different eigenvalues
are linearly independent. So if a n× n matrix has n nonzero
eigenvalues, it is of full rank.

▶ The trace of a matrix is the sum of the eigenvectors:
tr(A) = λ1 + λ2 + . . .+ λn.

▶ The determinant of a matrix is the product of the
eigenvectors: det(A) = λ1λ2 . . . λn.

▶ The eigenvectors and eigenvalues of the covariance matrix
of a data set data are also used in principal component
analysis (similar to factor analysis).
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1.3: Quadratic Forms & Definiteness



Quadratic forms
▶ A quadratic form on Rn is a real-valued function of the form

Q(x1, . . . , xn) =
∑
i≤j

aijxixj.

▶ E.g. in R2 we have Q(x1, x2) = a11x21 + a12x1x2 + a22x22.
▶ Quadratic forms can be represented by a symmetric matrix

A such that:
Q(x) = x′Ax

▶ E.g. if x = (x1, x2)′, then

Q(x) =
(
x1 x2

) a11
1

2
a12

1

2
a12 a22

(x1x2
)

= a11x21 +
1

2
(a12 + a21)x1x2 + a22x22

(1)

but A is symmetric, i.e. a12 = a21, so we can write,

a11x21 + a12x1x2 + a22x2x2.
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Quadratic forms
If x ∈ R3, i.e. x = (x1, x2, x3)′, then the general three dimensional
quadratic form is:

Q(x) = x′Ax

=
(
x1 x2 x3

)


a11
1

2
a12

1

2
a13

1

2
a12 a22

1

2
a23

1

2
a13

1

2
a23 a33


x1
x2
x3


= a11x21 + a22x22 + a33x23 + a12x1x2 + a13x1x3 + a23x2x3

(2)

Quadratic Forms and Sum of Squares

Recall sums of squares can be written as x′x and quadratic
forms are x′Ax. Quadratic forms are like generalised and
weighted sum of squares. Note that if A = I then we recover the
sums of squares exactly.
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Definiteness of quadratic forms

▶ A quadratic form always takes on the value zero at the
point x = 0. This is not an interesting result!

▶ For example, if x ∈ R, i.e. x = x1 then the general quadratic
form is ax21 which equals zero when x1 = 0.

▶ Its distinguishing characteristic is the set of values it takes
when x ̸= 0.

▶ We want to know if x = 0 is a max, min or neither.
▶ Example: when x ∈ R, i.e. the quadratic form is ax21,

a > 0 means ax2 ≥ 0 and equals 0 only when x = 0.
Such a form is called positive definite; x = 0 is
a global minimiser.

a < 0 means ax2 ≤ 0 and equals 0 only when x = 0.
Such a form is called negative definite; x = 0
is a global maximiser.
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Positive definite

If A =

(
1 0
0 1

)
then Q1(x) = x′Ax = x21 + x22.

▶ Q1 is greater than zero at x ̸= 0 i.e. (x1, x2) ̸= (0, 0).
▶ The point x = 0 is a global minimum.
▶ Q1 is called positive definite.
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Negative definite

If A =

(
−1 0
0 −1

)
then Q2(x) = x′Ax = −x21 − x22.

▶ Q2 is less than zero at x ̸= 0 i.e. (x1, x2) ̸= (0, 0).
▶ The point x = 0 is a global maximum.
▶ Q2 is called negative definite.
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Indefinite

If A =

(
1 0
0 −1

)
then Q3(x) = x′Ax = x21 − x22.

▶ Q3 can be take both positive and negative values.
▶ E.g. Q3(1, 0) = +1 and Q3(0, 1) = −1.
▶ Q3 is called indefinite.
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Positive semidefinite

If A =

(
1 1
1 1

)
then Q4(x) = x′Ax = x21 + 2x1x2 + x22.

▶ Q4 is always ≥ 0 but does equal zero at some x ̸= 0.
▶ E.g. Q4(10,−10) = 0.
▶ Q4 is called positive semidefinite.
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Negative semidefinite

If A =

(
−1 1
−1 −1

)
then Q5(x) = x′Ax = −(x1 + x2)2.

▶ Q5 is always ≤ 0 but does equal zero at some x ̸= 0.
▶ E.g. Q5(10,−10) = 0.
▶ Q5 is called negative semidefinite.

47 / 71



Definite symmetric matrices

A symmetric matrix, A, is called positive definite, positive
semidefinite, negative definite, etc. according to the
definiteness of the corresponding quadratic form Q(x) = x′Ax.
Let A be a n× n symmetric matrix, then A is
1. positive definite if x′Ax > 0 for all x ̸= 0 in Rn

2. positive semidefinite if x′Ax ≥ 0 for all x ̸= 0 in Rn

3. negative definite if x′Ax < 0 for all x ̸= 0 in Rn

4. negative semidefinite if x′Ax ≤ 0 for all x ̸= 0 in Rn

5. indefinite if x′Ax > 0 for some x ̸= 0 in Rn and < 0 for
some other x in Rn

▶ We can check the definiteness of a matrix by showing that
one of these definitions holds as in the example

▶ You can find the eigenvalues to check definiteness
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How else to check for definiteness?
You can check the sign of the sequence of determinants of the
leading principal minors:

Positive Definite
. An n× n matrix M is positive definite if all the following
matrices have a positive determinant:
▶ the top left 1× 1 corner of M (1st order principal minor)
▶ the top left 2× 2 corner of M (2nd order principal minor)

...
▶ M itself.

In other words, all of the leading principal minors are positive.

Negative Definite

. A matrix is negative definite if all kth order leading principal
minors are negative when k is odd and positive when k is even.
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Why do we care about definiteness?
Useful for establishing if a (multivariate) function has a
maximum, minimum or neither at a critical point.
▶ If we have a function, f(x), we can show that a minimum

exists at a critical point, i.e. when f′(x) = 0, if f′′(x) > 0.

Positive Definite

f(x) = 2x2.

▶ f′(x) = 4x

▶ f′(x) !
= 0 → x = 0

▶ f′′(x) = 4 > 0 → minimum at x = 0.
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Why do we care about definiteness?
▶ In the special case of a univariate function f′′(x) is a 1× 1

Hessian matrix and showing that f′′(x) > 0 is equivalent to
showing that the Hessian is positive definite.

▶ If we have a bivariate function f(x, y) we find critical points
when the first order partial derivatives are equal to zero:

1. Find the first order derivatives and set them equal to zero
2. Solve simultaneously to find critical points

▶ We can check if max or min or neither using the Hessian
matrix, H, the matrix of second order partial derivatives:

H =

[
fxx fxy
fyx fyy

]
1. (If necessary) evaluate the Hessian at a critical point
2. Check if H is positive or negative definite:

▶ |H| > 0 and fxx > 0 → positive definite → minimum
▶ |H| > 0 and fxx < 0 → negative definite → maximum

3. Repeat for all critical points
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Why do we care about definiteness?

▶ If we find the second order conditions and show that it is a
positive definite matrix then we have shown that we have a
minimum.

▶ Positive definite matrices are non-singular, i.e. we can
invert them. So if we can show X′X is positive definite, we
can find [X′X]−1.

▶ Application: showing that the Ordinary Least Squares
(OLS) minimises the sum of squared residuals.
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Matrices as systems of equations

▶ A system of equations:

y1 = x11b1 + x12b2 + . . .+ x1kbk

y2 = x21b1 + x22b2 + . . .+ x2kbk
...

yn = xn1b1 + xn2b2 + . . .+ xnkbk

(3)

▶ The matrix form:
y1
y2
...
yn

 =


x11 x12 . . . x1k
x21 x22 . . . x2k
...

...
...

xn1 xn2 . . . xnk



b1
b2
...
bk

 .

(4)
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Matrices as systems of equations

▶ More succinctly: y = Xb where

y =


y1
y2
...
yn

 ; b =


b1
b2
...
bk

 ; xi =


xi1
xi2
...
xik


for i = 1, 2, . . . , n and

X =


x11 x12 . . . x1k
x21 x22 . . . x2k
...

...
...

xn1 xn2 . . . xnk

 =


x′1
x′2
...
x′n


▶ xi is the “covariate vector” for the ith observation.
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Matrices as systems of equations

▶ We can write y = Xb as
y1
y2
...
yn

 =


x′1
x′2
...
x′n

b.

▶ Returning to the original system, we can write each
individual equation using vectors:

y1 = x′1b
y2 = x′2b

...
yn = x′nb.
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1.4: Mixing Matrices, Vectors & Summation



Mixing matrices, vectors and summation notation

Often we want to find X′X or X′u. A convenient way to write this
is as a sum of vectors. Say we have a 3× 2 matrix X:

X =

x11 x12
x21 x22
x31 x32

 =

x′1x′2
x′3

 ; xi =
[
xi1
xi2

]
; and u =

u1u2
u3


We can write,

X′X =

[
x11 x21 x31
x12 x22 x33

]x11 x12
x21 x22
x31 x32


=

[
x1 x2 x3

] x′1x′2
x′3


= x1x′1 + x2x′2 + x3x′3

=

3∑
i=1

xix′i.

56 / 71



Mixing matrices, vectors and summation notation

In a similar fashion, we can also show that X′u =

3∑
i=1

xiui.

X′u =

[
x11 x21 x31
x12 x22 x33

]u1u2
u3


=

[
x11u1 + x21u2 + x31u3
x12u1 + x22u2 + x32u3

]
= x1u1 + x2u2 + x3u3

=

3∑
i=1

xiui.

57 / 71



1.5: Applications in Econometrics



Application: variance-covariance matrix

▶ For the univariate case, var(y) = E([y− µ]2).

▶ In the multivariate case y is a vector of n random variables.
▶ Without loss of generality, assume y has mean zero, i.e.

E(y) = µ = 0. Then,

cov(y, y) = var(y) = E([y− µ][y− µ]′)

= E

(
y1
y2
...
yn

 [y1 y2 . . . yn
])

= E


y21 y1y2 . . . y1yn

y2y1 y22 . . . y2yn
...

...
...

yny1 yny2 . . . y2n


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Application: variance-covariance matrix

▶ Hence, we have a variance-covariance matrix:

var(y) =


var(y1) cov(y1, y2) . . . cov(y1, yn)

cov(y2, y1) var(y2) . . . cov(y2, yn)
...

...
...

cov(yn, y1) cov(yn, y2) . . . var(yn)


▶ What if we weight the random variables

with a vector of constants, a?

var(a′y) = E([a′y− a′µ][a′y− a′µ]′)
= E(a′[y− µ](a′[y− µ])′)

= E(a′[y− µ][y− µ]′a)
= a′E([y− µ][y− µ]′)a
= a′var(y)a.
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Application: variance of sums of random variables

Let y = (y1, y2)′ be a vector of random variables and
a = (a1, a2)′ be some constants,

a′y =
[
a1 a2

] [y1
y2

]
= a1y1 + a2y2.

Now, var(a1y1 + a2y2) = var(a′y) = a′var(y)a where

var(y) =
[

var(y1) cov(y1, y2)
cov(y1, y2) var(y2)

]
is the (symmetric) variance-covariance matrix.

var(a′y) = a′var(y)a

=
[
a1 a2

] [ var(y1) cov(y1, y2)
cov(y1, y2) var(y2)

] [
a1
a2

]
= a21var(y1) + a22var(y2) + 2a1a2cov(y1, y2)
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Application: Standardizing a Univariate Normally Distributed Vector
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Standardizing a Bivariate Normal Distribution

Is this also true for multivariate (e.g. bivariate) normal vectors?

ε
1

PDF bivariate normal

ε2

The example shows a bivariate normal distribution of ε and ν with density

f(ε, ν) = 1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(ε2 − 2ρ εν + ν2)

)
with N = 1000,

σε = σν = 1, and ρ = 0.8. The graph was produced using the ado file graph3d.
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Application: Standardizing a Normally Distributed Vector

Consider the vector of random variables y that is normally
distributed with expectation µ and covariance matrix Σ:

y ∼ N[µ,Σ].

Show that the standardized vector

Σ−1/2(y− µ) = z ∼ N[0, I].

Let’s weight the random variable in z = y− µ with a symmetric
matrix Σ−1/2.

E(Σ−1/2z) = Σ−1/2E(z) = 0.

Var(Σ−1/2z) = Σ−1/2ΣΣ−1/2 = I.
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Application: Standardizing a Normally Distributed Vector

Example

Bivariate vector y =

(
y1
y2

)
with ρ = 1,µ1 = 1,µ2 = 8,σ2

1 = 13,

σ2
2 = 5 (

y1
y2

)
∼ N

[(
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)]
Show that E(Σ−1/2z) = Σ−1/2E(z) = 0:

E(z) = E
(
y1 − µ1

y2 − µ2

)
=

(
0
0

)
Drawing two values of y11 = −1, y21 = 3 and y12 = 6, y22 = 10

E(z) = 1/2

(
−1− 1
6− 8

)
+ 1/2

(
3− 1
10− 8

)
=

(
0
0

)
.
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Application: OLS

Given a linear model y = Xβ + u derive the OLS estimator β.
Show that β achieves a minimum.
▶ The OLS estimator β minimises the sum of squared

residuals,

u′u =

n∑
i=1

u2i where u = y− Xβ or ui = yi − x′iβ.

S(β) =
n∑

i=1

(yi − x′iβ)
2 = (y− Xβ)′(y− Xβ)

= y′y− 2y′Xβ + β′X′Xβ
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Multiplying (y− Xβ)′(y− Xβ) out

. . .− (Xβ)′y− y′Xβ . . .

. . .− ( y
1×n

′ X
n×k

β
k×1

)′ − y′
1×n

X
n×k

β
k×1

. . .

Recall that for a symmetric matrix (y′Xβ)′ = (y′Xβ)
. . .− 2y′X′β . . .

Example

y =

[
1
2

]
β =

[
0.5
2

]
;X =

[
2 3
1 0

]
. . .− β′X′y− y′Xβ . . .

−
[
0.5 2

] [2 1
3 0

] [
1
2

]
−

[
1 2

] [2 3
1 0

] [
0.5
2

]
= −16

= . . .− 2y′X′β . . .

= −2

([
1 2

] [2 3
1 0

] [
0.5
2

])
= −2×

(
(0.5× 2 + 2× 3)× 1 + (0.5× 1 + 2× 0)× 2

)
= −16
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Application: OLS

▶ Recall

S(β) =
n∑

i=1

(yi − x′iβ)
2 = (y− Xβ)′(y− Xβ)

= y′y− 2y′Xβ + β′X′Xβ

▶ Take the first derivative of S(β) and set it equal to zero:

∂S(β)
∂β

= −2X′y+ 2X′Xβ = 0 → X′Xβ = X′y.

▶ Assuming X (and therefore X′X) is of full rank (so is X′X
invertible) we get,

β = (X′X)−1X′y.
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Application: OLS

▶ For a minimum we need to use the second order
conditions:

∂2S(β)
∂β∂β′ = 2X′X.

▶ The solution will be a minimum if X′X is a positive definite
matrix. Let q = c′X′Xc for some c ̸= 0. Then

q = v′v =

n∑
i=1

ν2i , where v = Xc.

▶ Unless v = 0, q is positive. But, if v = 0 then v or c would be
a linear combination of the columns of X that equals 0
which contradicts the assumption that X has full rank.
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Application: OLS

▶ Since c is arbitrary, q is positive for every c ̸= 0 which
establishes that X′X is positive definite.

▶ Therefore, if X has full rank, then the least squares solution
β is unique and minimises the sum of squared residuals.

69 / 71



Matrix Operations

Operation R Stata Mata Matlab Python

A =

[
5 7
10 5

]
A=matrix(c(5,7,10,2),
ncol=2,byrow=T)

mat A = (5,7\10,5) A = (5,7\10,5) A = [5,7;10,2] A = np.array([[5,
7], [10, 5]])

r × r
identity matrix Ir diag(1,r) mat I = I(r) I(r) eye(r) np.eye(r)

A−1 solve(A) mat C = inv(A) invsym(A) inv(A) np.linalg.inv(A)

A + B A + B mat C = A + B A + B A + B np.add(A,B)

AB A %*% B mat D = A*B A * B A * B np.multiply(A,B)

A′ t(A) mat a = A’ A’ A’ A.T

Kronecker product
of A and B

kronecker.prod(A, B) mat b = A#B A#B A = [5,7;10,2] np.kron(A, B)

...
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Matrix Functions

Function R Stata Mata Matlab Python

eigenvalues of A &
eigenvectors

eigen(A) matrix eigenva-
lues r c = A

eigenvalues(A) [V,E] = eig(A) np.linalg.eig(A)

covariance matrix
var(A) or
cov(A) mat r= corr(A) corr(A) cov(A) np.cov(A)

rank(A) qr(A)$rank — rank(A) rank(A) np.linalg.matrix_rank(A)

det(A) det(A) scalar det = det(A) det(A) det(A) np.linalg.det(A)

vectorize A b=c(A) mat b = vec(A) vec(A) A = [5,7;10,2] np.vectorize(A)

...
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